2 research outputs found

    Markov Chain-Based Stochastic Strategies for Robotic Surveillance

    Full text link
    This article surveys recent advancements of strategy designs for persistent robotic surveillance tasks with the focus on stochastic approaches. The problem describes how mobile robots stochastically patrol a graph in an efficient way where the efficiency is defined with respect to relevant underlying performance metrics. We first start by reviewing the basics of Markov chains, which is the primary motion model for stochastic robotic surveillance. Then two main criteria regarding the speed and unpredictability of surveillance strategies are discussed. The central objects that appear throughout the treatment is the hitting times of Markov chains, their distributions and expectations. We formulate various optimization problems based on the concerned metrics in different scenarios and establish their respective properties

    Stochastic Strategies for Robotic Surveillance as Stackelberg Games

    Full text link
    This paper studies a stochastic robotic surveillance problem where a mobile robot moves randomly on a graph to capture a potential intruder that strategically attacks a location on the graph. The intruder is assumed to be omniscient: it knows the current location of the mobile agent and can learn the surveillance strategy. The goal for the mobile robot is to design a stochastic strategy so as to maximize the probability of capturing the intruder. We model the strategic interactions between the surveillance robot and the intruder as a Stackelberg game, and optimal and suboptimal Markov chain based surveillance strategies in star, complete and line graphs are studied. We first derive a universal upper bound on the capture probability, i.e., the performance limit for the surveillance agent. We show that this upper bound is tight in the complete graph and further provide suboptimality guarantees for a natural design. For the star and line graphs, we first characterize dominant strategies for the surveillance agent and the intruder. Then, we rigorously prove the optimal strategy for the surveillance agent
    corecore