16,917 research outputs found

    BL-MNE: Emerging Heterogeneous Social Network Embedding through Broad Learning with Aligned Autoencoder

    Full text link
    Network embedding aims at projecting the network data into a low-dimensional feature space, where the nodes are represented as a unique feature vector and network structure can be effectively preserved. In recent years, more and more online application service sites can be represented as massive and complex networks, which are extremely challenging for traditional machine learning algorithms to deal with. Effective embedding of the complex network data into low-dimension feature representation can both save data storage space and enable traditional machine learning algorithms applicable to handle the network data. Network embedding performance will degrade greatly if the networks are of a sparse structure, like the emerging networks with few connections. In this paper, we propose to learn the embedding representation for a target emerging network based on the broad learning setting, where the emerging network is aligned with other external mature networks at the same time. To solve the problem, a new embedding framework, namely "Deep alIgned autoencoder based eMbEdding" (DIME), is introduced in this paper. DIME handles the diverse link and attribute in a unified analytic based on broad learning, and introduces the multiple aligned attributed heterogeneous social network concept to model the network structure. A set of meta paths are introduced in the paper, which define various kinds of connections among users via the heterogeneous link and attribute information. The closeness among users in the networks are defined as the meta proximity scores, which will be fed into DIME to learn the embedding vectors of users in the emerging network. Extensive experiments have been done on real-world aligned social networks, which have demonstrated the effectiveness of DIME in learning the emerging network embedding vectors.Comment: 10 pages, 9 figures, 4 tables. Full paper is accepted by ICDM 2017, In: Proceedings of the 2017 IEEE International Conference on Data Mining

    Multimodal Classification of Urban Micro-Events

    Get PDF
    In this paper we seek methods to effectively detect urban micro-events. Urban micro-events are events which occur in cities, have limited geographical coverage and typically affect only a small group of citizens. Because of their scale these are difficult to identify in most data sources. However, by using citizen sensing to gather data, detecting them becomes feasible. The data gathered by citizen sensing is often multimodal and, as a consequence, the information required to detect urban micro-events is distributed over multiple modalities. This makes it essential to have a classifier capable of combining them. In this paper we explore several methods of creating such a classifier, including early, late, hybrid fusion and representation learning using multimodal graphs. We evaluate performance on a real world dataset obtained from a live citizen reporting system. We show that a multimodal approach yields higher performance than unimodal alternatives. Furthermore, we demonstrate that our hybrid combination of early and late fusion with multimodal embeddings performs best in classification of urban micro-events

    LATTE: Application Oriented Social Network Embedding

    Full text link
    In recent years, many research works propose to embed the network structured data into a low-dimensional feature space, where each node is represented as a feature vector. However, due to the detachment of embedding process with external tasks, the learned embedding results by most existing embedding models can be ineffective for application tasks with specific objectives, e.g., community detection or information diffusion. In this paper, we propose study the application oriented heterogeneous social network embedding problem. Significantly different from the existing works, besides the network structure preservation, the problem should also incorporate the objectives of external applications in the objective function. To resolve the problem, in this paper, we propose a novel network embedding framework, namely the "appLicAtion orienTed neTwork Embedding" (Latte) model. In Latte, the heterogeneous network structure can be applied to compute the node "diffusive proximity" scores, which capture both local and global network structures. Based on these computed scores, Latte learns the network representation feature vectors by extending the autoencoder model model to the heterogeneous network scenario, which can also effectively unite the objectives of network embedding and external application tasks. Extensive experiments have been done on real-world heterogeneous social network datasets, and the experimental results have demonstrated the outstanding performance of Latte in learning the representation vectors for specific application tasks.Comment: 11 Pages, 12 Figures, 1 Tabl

    Data mining and fusion

    No full text

    Knowledge Graph semantic enhancement of input data for improving AI

    Full text link
    Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning -- recommendation and community detection. The KG improves both accuracy and explainability

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie
    • …
    corecore