2 research outputs found

    Privacy-Preserving IP Verification

    Get PDF
    The rapid growth of the globalized integrated circuit (IC) supply chain has drawn the attention of numerous malicious actors that try to exploit it for profit. One of the most prominent targets of such parties is the third-party intellectual property (3PIP) vendors and their circuit designs. With the increasing number of transactions between vendors and system integrators, the threat of IP reuse and piracy has become a significant consideration for the IC industry. What is more, the correctness of 3PIP designs should be verified before integration, imposing another challenge for 3PIP vendors since they have to prove the functionality of their designs to system integrators while protecting the privacy of the circuit implementations. To eliminate this deadlock, we utilize the cryptographic technique of \u27zero-knowledge proofs\u27 to enable 3PIP vendors to convince system integrators about various functional properties of a circuit (e.g., area, power, frequency) without disclosing its netlist (i.e., in zero-knowledge). Our approach comprises a circuit compiler that transforms arbitrary netlists into a zero knowledge-friendly format and a library of modules that provide cryptographic guarantees for various properties of the netlist while hiding the actual gates. We evaluate our method using combinational and sequential circuits from the ISCAS and ITC benchmark suites

    Path-Directed Abstraction and Refinement for SAT-Based Design Debugging

    No full text
    corecore