18 research outputs found

    Hash-based hierarchical caching and layered filtering for interactive previews in global illumination rendering

    Get PDF
    Copyright © 2020 by the authors. Modern Monte-Carlo-based rendering systems still suffer from the computational complexity involved in the generation of noise-free images, making it challenging to synthesize interactive previews. We present a framework suited for rendering such previews of static scenes using a caching technique that builds upon a linkless octree. Our approach allows for memory-efficient storage and constant-time lookup to cache diffuse illumination at multiple hitpoints along the traced paths. Non-diffuse surfaces are dealt with in a hybrid way in order to reconstruct view-dependent illumination while maintaining interactive frame rates. By evaluating the visual fidelity against ground truth sequences and by benchmarking, we show that our approach compares well to low-noise path-traced results, but with a greatly reduced computational complexity, allowing for interactive frame rates. This way, our caching technique provides a useful tool for global illumination previews and multi-view rendering.German Federal Ministry for Economic Affairs and Energy (BMWi), funding the MoVISO ZIM-project under Grant No.: ZF4120902

    Rendering along the Hilbert Curve

    Full text link
    Based on the seminal work on Array-RQMC methods and rank-1 lattice sequences by Pierre L'Ecuyer and collaborators, we introduce efficient deterministic algorithms for image synthesis. Enumerating a low discrepancy sequence along the Hilbert curve superimposed on the raster of pixels of an image, we achieve noise characteristics that are desirable with respect to the human visual system, especially at very low sampling rates. As compared to the state of the art, our simple algorithms neither require randomization, nor costly optimization, nor lookup tables. We analyze correlations of space-filling curves and low discrepancy sequences, and demonstrate the benefits of the new algorithms in a professional, massively parallel light transport simulation and rendering system

    Real-Time Hair Filtering with Convolutional Neural Networks

    Get PDF
    Rendering of realistic-looking hair is in general still too costly to do in real-time applications, from simulating the physics to rendering the fine details required for it to look natural, including self-shadowing.We show how an autoencoder network, that can be evaluated in real time, can be trained to filter an image of few stochastic samples, including self-shadowing, to produce a much more detailed image that takes into account real hair thickness and transparency

    Conditional resampled importance sampling and ReSTIR

    Get PDF
    Recent work on generalized resampled importance sampling (GRIS) enables importance-sampled Monte Carlo integration with random variable weights replacing the usual division by probability density. This enables very flexible spatiotemporal sample reuse, even if neighboring samples (e.g., light paths) have intractable probability densities. Unlike typical Monte Carlo integration, which samples according to some PDF, GRIS instead resamples existing samples. But resampling with GRIS assumes samples have tractable marginal contribution weights, which is problematic if reusing, for example, light subpaths from unidirectionally-sampled paths. Reusing such subpaths requires conditioning by (non-reused) segments of the path prefixes. In this paper, we extend GRIS to conditional probability spaces, showing correctness given certain conditional independence between integration variables and their unbiased contribution weights. We show proper conditioning when using GRIS over randomized conditional domains and how to formulate a joint unbiased contribution weight for unbiased integration. To show our theory has practical impact, we prototype a modified ReSTIR PT with a final gather pass. This reuses subpaths, postponing reuse at least one bounce along each light path. As in photon mapping, such a final gather reduces blotchy artifacts from sample correlation and reduced correlation improves the behavior of modern denoisers on ReSTIR PT signals

    Fast and interactive ray-based rendering

    Get PDF
    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University LondonDespite their age, ray-based rendering methods are still a very active field of research with many challenges when it comes to interactive visualization. In this thesis, we present our work on Guided High-Quality Rendering, Foveated Ray Tracing for Head Mounted Displays and Hash-based Hierarchical Caching and Layered Filtering. Our system for Guided High-Quality Rendering allows for guiding the sampling rate of ray-based rendering methods by a user-specified Region of Interest (RoI). We propose two interaction methods for setting such an RoI when using a large display system and a desktop display, respectively. This makes it possible to compute images with a heterogeneous sample distribution across the image plane. Using such a non-uniform sample distribution, the rendering performance inside the RoI can be significantly improved in order to judge specific image features. However, a modified scheduling method is required to achieve sufficient performance. To solve this issue, we developed a scheduling method based on sparse matrix compression, which has shown significant improvements in our benchmarks. By filtering the sparsely sampled image appropriately, large brightness variations in areas outside the RoI are avoided and the overall image brightness is similar to the ground truth early in the rendering process. When using ray-based methods in a VR environment on head-mounted display de vices, it is crucial to provide sufficient frame rates in order to reduce motion sickness. This is a challenging task when moving through highly complex environments and the full image has to be rendered for each frame. With our foveated rendering sys tem, we provide a perception-based method for adjusting the sample density to the user’s gaze, measured with an eye tracker integrated into the HMD. In order to avoid disturbances through visual artifacts from low sampling rates, we introduce a reprojection-based rendering pipeline that allows for fast rendering and temporal accumulation of the sparsely placed samples. In our user study, we analyse the im pact our system has on visual quality. We then take a closer look at the recorded eye tracking data in order to determine tracking accuracy and connections between different fixation modes and perceived quality, leading to surprising insights. For previewing global illumination of a scene interactively by allowing for free scene exploration, we present a hash-based caching system. Building upon the concept of linkless octrees, which allow for constant-time queries of spatial data, our frame work is suited for rendering such previews of static scenes. Non-diffuse surfaces are supported by our hybrid reconstruction approach that allows for the visualization of view-dependent effects. In addition to our caching and reconstruction technique, we introduce a novel layered filtering framework, acting as a hybrid method between path space and image space filtering, that allows for the high-quality denoising of non-diffuse materials. Also, being designed as a framework instead of a concrete filtering method, it is possible to adapt most available denoising methods to our layered approach instead of relying only on the filtering of primary hitpoints

    Utilising path-vertex data to improve Monte Carlo global illumination.

    Get PDF
    Efficient techniques for photo-realistic rendering are in high demand across a wide array of industries. Notable applications include visual effects for film, entertainment and virtual reality. Less direct applications such as visualisation for architecture, lighting design and product development also rely on the synthesis of realistic and physically based illumination. Such applications assert ever increasing demands on light transport algorithms, requiring the computation of photo-realistic effects while handling complex geometry, light scattering models and illumination. Techniques based on Monte Carlo integration handle such scenarios elegantly and robustly, but despite seeing decades of focused research and wide commercial support, these methods and their derivatives still exhibit undesirable side effects that are yet to be resolved. In this thesis, Monte Carlo path tracing techniques are improved upon by utilizing path vertex data and intermediate radiance contributions readily available during rendering. This permits the development of novel progressive algorithms that render low noise global illumination while striving to maintain the desirable accuracy and convergence properties of unbiased methods. The thesis starts by presenting a discussion into optical phenomenon, physically based rendering and achieving photo realistic image synthesis. This is followed by in-depth discussion of the published theoretical and practical research in this field, with a focus on stochastic methods and modem rendering methodologies. This provides insight into the issues surrounding Monte Carlo integration both in the general and rendering specific contexts, along with an appreciation for the complexities of solving global light transport. Alternative methods that aim to address these issues are discussed, providing an insight into modem rendering paradigms and their characteristics. Thus, an understanding of the key aspects is obtained, that is necessary to build up and discuss the novel research and contributions to the field developed throughout this thesis. First, a path space filtering strategy is proposed that allows the path-based space of light transport to be classified into distinct subsets. This permits the novel combination of robust path tracing and recent progressive photon mapping algorithms to handle each subset based on the characteristics of the light transport in that space. This produces a hybrid progressive rendering technique that utilises the strengths of existing state of the art Monte Carlo and photon mapping methods to provide efficient and consistent rendering of complex scenes with vanishing bias. The second original contribution is a probabilistic image-based filtering and sample clustering framework that provides high quality previews of global illumination whilst remaining aware of high frequency detail and features in geometry, materials and the incident illumination. As will be seen, the challenges of edge-aware noise reduction are numerous and long standing, particularly when identifying high frequency features in noisy illumination signals. Discontinuities such as hard shadows and glossy reflections are commonly overlooked by progressive filtering techniques, however by dividing path space into multiple layers, once again based on utilising path vertex data, the overlapping illumination of varying intensities, colours and frequencies is more effectively handled. Thus noise is removed from each layer independent of features present in the remaining path space, effectively preserving such features
    corecore