902,573 research outputs found
Perception-aware Path Planning
In this paper, we give a double twist to the problem of planning under
uncertainty. State-of-the-art planners seek to minimize the localization
uncertainty by only considering the geometric structure of the scene. In this
paper, we argue that motion planning for vision-controlled robots should be
perception aware in that the robot should also favor texture-rich areas to
minimize the localization uncertainty during a goal-reaching task. Thus, we
describe how to optimally incorporate the photometric information (i.e.,
texture) of the scene, in addition to the the geometric one, to compute the
uncertainty of vision-based localization during path planning. To avoid the
caveats of feature-based localization systems (i.e., dependence on feature type
and user-defined thresholds), we use dense, direct methods. This allows us to
compute the localization uncertainty directly from the intensity values of
every pixel in the image. We also describe how to compute trajectories online,
considering also scenarios with no prior knowledge about the map. The proposed
framework is general and can easily be adapted to different robotic platforms
and scenarios. The effectiveness of our approach is demonstrated with extensive
experiments in both simulated and real-world environments using a
vision-controlled micro aerial vehicle.Comment: 16 pages, 20 figures, revised version. Conditionally accepted for
IEEE Transactions on Robotic
Perception-aware time optimal path parameterization for quadrotors
The increasing popularity of quadrotors has given rise to a class of
predominantly vision-driven vehicles. This paper addresses the problem of
perception-aware time optimal path parametrization for quadrotors. Although
many different choices of perceptual modalities are available, the low weight
and power budgets of quadrotor systems makes a camera ideal for on-board
navigation and estimation algorithms. However, this does come with a set of
challenges. The limited field of view of the camera can restrict the visibility
of salient regions in the environment, which dictates the necessity to consider
perception and planning jointly. The main contribution of this paper is an
efficient time optimal path parametrization algorithm for quadrotors with
limited field of view constraints. We show in a simulation study that a
state-of-the-art controller can track planned trajectories, and we validate the
proposed algorithm on a quadrotor platform in experiments.Comment: Accepted to appear at ICRA 202
Optic flow based perception of two-dimensional trajectories and the effects of a single landmark.
It is well established that human observers can detect their heading direction on a very short time scale on the basis of optic flow (500ms; Hooge et al., 2000). Can they also integrate these perceptions over time to reconstruct a 2D trajectory simulated by the optic flow stimulus? We investigated the visual perception and reconstruction of passively travelled two-dimensional trajectories from optic flow with and without a single landmark. Stimuli in which translation and yaw are unyoked can give rise to illusory percepts; using a structured visual environment instead of only dots can improve perception of these stimuli. Does the additional visual and/or extra-retinal information provided by a single landmark have a similar, beneficial effect? Here, seated, stationary subjects wore a head-mounted display showing optic flow stimuli that simulated various manoeuvres: linear or curvilinear 2D trajectories over a horizontal ground plane. The simulated orientation was either fixed in space, fixed relative to the path, or changed relative to both. Afterwards, subjects reproduced the perceived manoeuvre with a model vehicle, of which we recorded position and orientation. Yaw was perceived correctly. Perception of the travelled path was less accurate, but still good when the simulated orientation was fixed in space or relative to the trajectory. When the amount of yaw was not equal to the rotation of the path, or in the opposite direction, subjects still perceived orientation as fixed relative to the trajectory. This caused trajectory misperception because yaw was wrongly attributed to a rotation of the path. A single landmark could improve perception
Model Predictive Control Based Trajectory Generation for Autonomous Vehicles - An Architectural Approach
Research in the field of automated driving has created promising results in
the last years. Some research groups have shown perception systems which are
able to capture even complicated urban scenarios in great detail. Yet, what is
often missing are general-purpose path- or trajectory planners which are not
designed for a specific purpose. In this paper we look at path- and trajectory
planning from an architectural point of view and show how model predictive
frameworks can contribute to generalized path- and trajectory generation
approaches for generating safe trajectories even in cases of system failures.Comment: Presented at IEEE Intelligent Vehicles Symposium 2017, Los Angeles,
CA, US
Recommended from our members
Stars in their eyes: What eye-tracking reveal about multimedia perceptual quality
Perceptual multimedia quality is of paramount
importance to the continued take-up and proliferation of multimedia applications: users will not use and pay for applications if they are perceived to be of low quality. Whilst traditionally distributed multimedia quality has been characterised by Quality of Service (QoS) parameters, these neglect the user perspective of the issue of quality. In order to redress this shortcoming, we characterise the user multimedia perspective using the Quality of Perception (QoP) metric, which encompasses not only a user’s satisfaction with the quality of a multimedia presentation, but also his/her ability to analyse,
synthesise and assimilate informational content of multimedia. In recognition of the fact that monitoring eye movements offers insights into visual perception, as well as the associated
attention mechanisms and cognitive processes, this paper reports on the results of a study investigating the impact of differing multimedia presentation frame rates on user QoP and eye path data. Our results show that provision of higher frame rates, usually assumed to provide better multimedia presentation quality, do not significantly impact upon the median coordinate value of eye path data. Moreover, higher frame rates do not significantly increase level of participant information assimilation, although they do significantly improve overall user enjoyment and quality perception of the multimedia content being shown
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
Structural equation modeling of eBankQual scale: a study of E-Banking in India
This study assesses the relationship between perceived quality, brand perception and perceived value with satisfaction. For the data analysis structural equation modeling (SEM) method and path analysis method were used. A result indicates that, eBankQual model is fit to assess relationship between service quality, brand perception and perceived value with overall customers’ satisfaction in e-banking service. Result of regression SEM indicates that, all 14 variables found significant and good predictors of overall satisfaction in e-banking services. However, result of SEM analysis indicates that, data supports to eBankQual model and dimensions Compensation, Convenience, Contact Facilities, Easy to Use, Responsiveness, Cost Effectiveness and System Availability including brand perception and perceived value were found more significant factors in the eBankQual model.Structural Equation Modeling, Service quality, Brand perception, Perceived value, Satisfaction
- …
