3 research outputs found

    Path Gain Algebraic Formulation for the Scalar Linear Network Coding Problem

    Full text link
    In the algebraic view, the solution to a network coding problem is seen as a variety specified by a system of polynomial equations typically derived by using edge-to-edge gains as variables. The output from each sink is equated to its demand to obtain polynomial equations. In this work, we propose a method to derive the polynomial equations using source-to-sink path gains as the variables. In the path gain formulation, we show that linear and quadratic equations suffice; therefore, network coding becomes equivalent to a system of polynomial equations of maximum degree 2. We present algorithms for generating the equations in the path gains and for converting path gain solutions to edge-to-edge gain solutions. Because of the low degree, simplification is readily possible for the system of equations obtained using path gains. Using small-sized network coding problems, we show that the path gain approach results in simpler equations and determines solvability of the problem in certain cases. On a larger network (with 87 nodes and 161 edges), we show how the path gain approach continues to provide deterministic solutions to some network coding problems.Comment: 12 pages, 6 figures. Accepted for publication in IEEE Transactions on Information Theory (May 2010

    Linear Network Coding for Two-Unicast-ZZ Networks: A Commutative Algebraic Perspective and Fundamental Limits

    Full text link
    We consider a two-unicast-ZZ network over a directed acyclic graph of unit capacitated edges; the two-unicast-ZZ network is a special case of two-unicast networks where one of the destinations has apriori side information of the unwanted (interfering) message. In this paper, we settle open questions on the limits of network coding for two-unicast-ZZ networks by showing that the generalized network sharing bound is not tight, vector linear codes outperform scalar linear codes, and non-linear codes outperform linear codes in general. We also develop a commutative algebraic approach to deriving linear network coding achievability results, and demonstrate our approach by providing an alternate proof to the previous results of C. Wang et. al., I. Wang et. al. and Shenvi et. al. regarding feasibility of rate (1,1)(1,1) in the network.Comment: A short version of this paper is published in the Proceedings of The IEEE International Symposium on Information Theory (ISIT), June 201
    corecore