727,650 research outputs found

    Model Predictive Control for Autonomous Driving Based on Time Scaled Collision Cone

    Full text link
    In this paper, we present a Model Predictive Control (MPC) framework based on path velocity decomposition paradigm for autonomous driving. The optimization underlying the MPC has a two layer structure wherein first, an appropriate path is computed for the vehicle followed by the computation of optimal forward velocity along it. The very nature of the proposed path velocity decomposition allows for seamless compatibility between the two layers of the optimization. A key feature of the proposed work is that it offloads most of the responsibility of collision avoidance to velocity optimization layer for which computationally efficient formulations can be derived. In particular, we extend our previously developed concept of time scaled collision cone (TSCC) constraints and formulate the forward velocity optimization layer as a convex quadratic programming problem. We perform validation on autonomous driving scenarios wherein proposed MPC repeatedly solves both the optimization layers in receding horizon manner to compute lane change, overtaking and merging maneuvers among multiple dynamic obstacles.Comment: 6 page

    Toward solving the sign problem with path optimization method

    Get PDF
    We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.Comment: 4 pages, 6 figure

    Suboptimal Solution Path Algorithm for Support Vector Machine

    Full text link
    We consider a suboptimal solution path algorithm for the Support Vector Machine. The solution path algorithm is an effective tool for solving a sequence of a parametrized optimization problems in machine learning. The path of the solutions provided by this algorithm are very accurate and they satisfy the optimality conditions more strictly than other SVM optimization algorithms. In many machine learning application, however, this strict optimality is often unnecessary, and it adversely affects the computational efficiency. Our algorithm can generate the path of suboptimal solutions within an arbitrary user-specified tolerance level. It allows us to control the trade-off between the accuracy of the solution and the computational cost. Moreover, We also show that our suboptimal solutions can be interpreted as the solution of a \emph{perturbed optimization problem} from the original one. We provide some theoretical analyses of our algorithm based on this novel interpretation. The experimental results also demonstrate the effectiveness of our algorithm.Comment: A shorter version of this paper is submitted to ICML 201
    corecore