10,761 research outputs found

    Exploiting the Path Propagation Time Differences in Multipath Transmission with FEC

    Get PDF
    We consider a transmission of a delay-sensitive data stream from a single source to a single destination. The reliability of this transmission may suffer from bursty packet losses - the predominant type of failures in today's Internet. An effective and well studied solution to this problem is to protect the data by a Forward Error Correction (FEC) code and send the FEC packets over multiple paths. In this paper we show that the performance of such a multipath FEC scheme can often be further improved. Our key observation is that the propagation times on the available paths often significantly differ, typically by 10-100ms. We propose to exploit these differences by appropriate packet scheduling that we call `Spread'. We evaluate our solution with a precise, analytical formulation and trace-driven simulations. Our studies show that Spread substantially outperforms the state-of-the-art solutions. It typically achieves two- to five-fold improvement (reduction) in the effective loss rate. Or conversely, keeping the same level of effective loss rate, Spread significantly decreases the observed delays and helps fighting the delay jitter.Comment: 12 page

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Computer based simulation of optical wireless communications for the development of optimized error protection and correction schemes

    Get PDF
    Commercial application of optical wireless communications is currently limited to the area of short range near ground connections, like networks between buildings over a few kilometers. For other areas of application, like data downlinks from flying platforms, demonstrations have been done, but commercial systems for long range communications over many kilometers are not yet available for general usage. The biggest challenge for reliable optical communications is to mitigate the fading of the received optical signal. A possible solution is to implement error protection and correction mechanisms for securing transmitted data. In this dissertation a simplified channel model is developed which can be used for computer based simulation. This simplified channel model is then used for the evaluation of error protection and correction mechanisms applied to the optical wireless channel. Finally generally proposed communication scenarios are evaluated if optical wireless communication is possible, based on the developed channel model. The results show that the combination of forward error correction and selective repeat automatic repeat request protocols can be used to realize reliable optical communication links in all proposed scenarios, even the most challenging ones. The back channel traffic for automatic repeat request protocols leads to a significant reduction of the transmittable user data rate in worst-case scenarios and has to be taken into account for the system design. The developed simulation approach can be used to optimize protocols for the optical wireless channel in order to reduce the load on the back channel and the over all required memory.Die kommerzielle Anwendung der optischen Freiraumkommunikation ist gegenwärtig auf den Bereich der bodennahen Kurzstreckenverbindungen mit wenigen Kilometern Länge begrenzt, beispielsweise Netzwerkverbindung zwischen Gebäuden. In anderen Anwendungsbereichen, z.B. Datendownlinks von fliegenden Plattformen, wurden zwar Technologiedemonstrationen durchgeführt, jedoch sind für solche Langstreckenverbindungen keine alltagstauglichen kommerziellen Systeme verfügbar. Die größte Herausforderung für zuverlässige optische Kommunikation ist die Kompensation der Signalschwankungen des empfangenen optischen Signals. Eine mögliche Lösung für dieses Problem ist die Implementierung von Fehlersicherungs- und Fehlerkorrekturmechanismen, um die Datenübertragung abzusichern. In dieser Dissertation wird ein vereinfachtes Kanalmodell entwickelt, welches für die Simulationen mittels Computern geeignet ist. Dieses vereinfachte Modell wird anschließend für die Bewertung von Fehlersicherungs- und Fehlerkorrekturmechanismen für den optischen Kanal verwendet. Abschliessend wird basierend auf dem entwickelten Kanalmodell der mögliche Einsatz von optischer Freiraumkommunikation in häufig vorgeschlagenen Szenarien untersucht. Die Ergebnisse zeigen, dass die Kombination von Vorwärtsfehlerkorrektur und Protokollen mit selektiver Wiederholung und automatischer Wiederholungsanfrage geeignet ist, um zuverlässige optische Kommunikationsverbindungen in allen vorgeschlagenen Szenarien zu realisieren, selbst in den anspruchsvollsten. Die Datenübertragung auf dem Rückkanal von Protokollen mit automatischer Wiederholungsanfrage führt im schlechtesten Fall zu einer signifikanten Reduzierung der übertragbaren Nutzdatenrate und muss bei der Systemauslegung berücksichtigt werden. Mit dem entwickelten Simulationsansatz können Protokolle für den optischen Funkkanal optimiert werden, um die Belastung des Rückkanals zu reduzieren und um den allgemeinen Speicherbedarf zu reduzieren
    corecore