4 research outputs found

    A Local Block Coordinate Descent Algorithm for the Convolutional Sparse Coding Model

    Full text link
    The Convolutional Sparse Coding (CSC) model has recently gained considerable traction in the signal and image processing communities. By providing a global, yet tractable, model that operates on the whole image, the CSC was shown to overcome several limitations of the patch-based sparse model while achieving superior performance in various applications. Contemporary methods for pursuit and learning the CSC dictionary often rely on the Alternating Direction Method of Multipliers (ADMM) in the Fourier domain for the computational convenience of convolutions, while ignoring the local characterizations of the image. A recent work by Papyan et al. suggested the SBDL algorithm for the CSC, while operating locally on image patches. SBDL demonstrates better performance compared to the Fourier-based methods, albeit still relying on the ADMM. In this work we maintain the localized strategy of the SBDL, while proposing a new and much simpler approach based on the Block Coordinate Descent algorithm - this method is termed Local Block Coordinate Descent (LoBCoD). Furthermore, we introduce a novel stochastic gradient descent version of LoBCoD for training the convolutional filters. The Stochastic-LoBCoD leverages the benefits of online learning, while being applicable to a single training image. We demonstrate the advantages of the proposed algorithms for image inpainting and multi-focus image fusion, achieving state-of-the-art results.Comment: 13 pages, 10 figure

    Patch Craft: Video Denoising by Deep Modeling and Patch Matching

    Full text link
    The non-local self-similarity property of natural images has been exploited extensively for solving various image processing problems. When it comes to video sequences, harnessing this force is even more beneficial due to the temporal redundancy. In the context of image and video denoising, many classically-oriented algorithms employ self-similarity, splitting the data into overlapping patches, gathering groups of similar ones and processing these together somehow. With the emergence of convolutional neural networks (CNN), the patch-based framework has been abandoned. Most CNN denoisers operate on the whole image, leveraging non-local relations only implicitly by using a large receptive field. This work proposes a novel approach for leveraging self-similarity in the context of video denoising, while still relying on a regular convolutional architecture. We introduce a concept of patch-craft frames - artificial frames that are similar to the real ones, built by tiling matched patches. Our algorithm augments video sequences with patch-craft frames and feeds them to a CNN. We demonstrate the substantial boost in denoising performance obtained with the proposed approach

    Working Locally Thinking Globally - Part I: Theoretical Guarantees for Convolutional Sparse Coding

    Full text link
    The celebrated sparse representation model has led to remarkable results in various signal processing tasks in the last decade. However, despite its initial purpose of serving as a global prior for entire signals, it has been commonly used for modeling low dimensional patches due to the computational constraints it entails when deployed with learned dictionaries. A way around this problem has been proposed recently, adopting a convolutional sparse representation model. This approach assumes that the global dictionary is a concatenation of banded Circulant matrices. Although several works have presented algorithmic solutions to the global pursuit problem under this new model, very few truly-effective guarantees are known for the success of such methods. In the first of this two-part work, we address the theoretical aspects of the sparse convolutional model, providing the first meaningful answers to corresponding questions of uniqueness of solutions and success of pursuit algorithms. To this end, we generalize mathematical quantities, such as the â„“0\ell_0 norm, the mutual coherence and the Spark, to their counterparts in the convolutional setting, which intrinsically capture local measures of the global model. In a companion paper, we extend the analysis to a noisy regime, addressing the stability of the sparsest solutions and pursuit algorithms, and demonstrate practical approaches for solving the global pursuit problem via simple local processing

    PACO: Global Signal Restoration via PAtch COnsensus

    Full text link
    Many signal processing algorithms break the target signal into overlapping segments (also called windows, or patches), process them separately, and then stitch them back into place to produce a unified output. At the overlaps, the final value of those samples that are estimated more than once needs to be decided in some way. Averaging, the simplest approach, tends to produce blurred results. Significant work has been devoted to this issue in recent years: several works explore the idea of a weighted average of the overlapped patches and/or pixels; a more recent approach is to promote agreement (consensus) between the patches at their intersections. This work investigates the case where consensus is imposed as a hard constraint on the restoration problem. This leads to a general framework applicable to all sorts of signals, problems, decomposition strategies, and featuring a number of theoretical and practical advantages over other similar methods. The framework itself consists of a general optimization problem and a simple and efficient \admm-based algorithm for solving it. We also show that the consensus step of the algorithm, which is the main bottleneck of similar methods, can be solved efficiently and easily for any arbitrary patch decomposition scheme. As an example of the potential of our framework, we propose a method for filling missing samples (inpainting) which can be applied to signals of any dimension, and show its effectiveness on audio, image and video signals
    corecore