11,480 research outputs found

    Machine learning approach for segmenting glands in colon histology images using local intensity and texture features

    Full text link
    Colon Cancer is one of the most common types of cancer. The treatment is planned to depend on the grade or stage of cancer. One of the preconditions for grading of colon cancer is to segment the glandular structures of tissues. Manual segmentation method is very time-consuming, and it leads to life risk for the patients. The principal objective of this project is to assist the pathologist to accurate detection of colon cancer. In this paper, the authors have proposed an algorithm for an automatic segmentation of glands in colon histology using local intensity and texture features. Here the dataset images are cropped into patches with different window sizes and taken the intensity of those patches, and also calculated texture-based features. Random forest classifier has been used to classify this patch into different labels. A multilevel random forest technique in a hierarchical way is proposed. This solution is fast, accurate and it is very much applicable in a clinical setup

    Contour Detection from Deep Patch-level Boundary Prediction

    Full text link
    In this paper, we present a novel approach for contour detection with Convolutional Neural Networks. A multi-scale CNN learning framework is designed to automatically learn the most relevant features for contour patch detection. Our method uses patch-level measurements to create contour maps with overlapping patches. We show the proposed CNN is able to to detect large-scale contours in an image efficienly. We further propose a guided filtering method to refine the contour maps produced from large-scale contours. Experimental results on the major contour benchmark databases demonstrate the effectiveness of the proposed technique. We show our method can achieve good detection of both fine-scale and large-scale contours.Comment: IEEE International Conference on Signal and Image Processing 201

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered

    Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders

    Full text link
    Convolutional autoencoders have emerged as popular methods for unsupervised defect segmentation on image data. Most commonly, this task is performed by thresholding a pixel-wise reconstruction error based on an â„“p\ell^p distance. This procedure, however, leads to large residuals whenever the reconstruction encompasses slight localization inaccuracies around edges. It also fails to reveal defective regions that have been visually altered when intensity values stay roughly consistent. We show that these problems prevent these approaches from being applied to complex real-world scenarios and that it cannot be easily avoided by employing more elaborate architectures such as variational or feature matching autoencoders. We propose to use a perceptual loss function based on structural similarity which examines inter-dependencies between local image regions, taking into account luminance, contrast and structural information, instead of simply comparing single pixel values. It achieves significant performance gains on a challenging real-world dataset of nanofibrous materials and a novel dataset of two woven fabrics over the state of the art approaches for unsupervised defect segmentation that use pixel-wise reconstruction error metrics

    Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network

    Full text link
    In recent years, various shadow detection methods from a single image have been proposed and used in vision systems; however, most of them are not appropriate for the robotic applications due to the expensive time complexity. This paper introduces a fast shadow detection method using a deep learning framework, with a time cost that is appropriate for robotic applications. In our solution, we first obtain a shadow prior map with the help of multi-class support vector machine using statistical features. Then, we use a semantic- aware patch-level Convolutional Neural Network that efficiently trains on shadow examples by combining the original image and the shadow prior map. Experiments on benchmark datasets demonstrate the proposed method significantly decreases the time complexity of shadow detection, by one or two orders of magnitude compared with state-of-the-art methods, without losing accuracy.Comment: 6 pages, 5 figures, Submitted to IROS 201
    • …
    corecore