192 research outputs found

    Deep Image Matting: A Comprehensive Survey

    Full text link
    Image matting refers to extracting precise alpha matte from natural images, and it plays a critical role in various downstream applications, such as image editing. Despite being an ill-posed problem, traditional methods have been trying to solve it for decades. The emergence of deep learning has revolutionized the field of image matting and given birth to multiple new techniques, including automatic, interactive, and referring image matting. This paper presents a comprehensive review of recent advancements in image matting in the era of deep learning. We focus on two fundamental sub-tasks: auxiliary input-based image matting, which involves user-defined input to predict the alpha matte, and automatic image matting, which generates results without any manual intervention. We systematically review the existing methods for these two tasks according to their task settings and network structures and provide a summary of their advantages and disadvantages. Furthermore, we introduce the commonly used image matting datasets and evaluate the performance of representative matting methods both quantitatively and qualitatively. Finally, we discuss relevant applications of image matting and highlight existing challenges and potential opportunities for future research. We also maintain a public repository to track the rapid development of deep image matting at https://github.com/JizhiziLi/matting-survey

    On the Link between Gaussian Homotopy Continuation and Convex Envelopes

    Full text link
    Abstract. The continuation method is a popular heuristic in computer vision for nonconvex optimization. The idea is to start from a simpli-fied problem and gradually deform it to the actual task while tracking the solution. It was first used in computer vision under the name of graduated nonconvexity. Since then, it has been utilized explicitly or im-plicitly in various applications. In fact, state-of-the-art optical flow and shape estimation rely on a form of continuation. Despite its empirical success, there is little theoretical understanding of this method. This work provides some novel insights into this technique. Specifically, there are many ways to choose the initial problem and many ways to progres-sively deform it to the original task. However, here we show that when this process is constructed by Gaussian smoothing, it is optimal in a specific sense. In fact, we prove that Gaussian smoothing emerges from the best affine approximation to Vese’s nonlinear PDE. The latter PDE evolves any function to its convex envelope, hence providing the optimal convexification

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Multiple View Geometry For Video Analysis And Post-production

    Get PDF
    Multiple view geometry is the foundation of an important class of computer vision techniques for simultaneous recovery of camera motion and scene structure from a set of images. There are numerous important applications in this area. Examples include video post-production, scene reconstruction, registration, surveillance, tracking, and segmentation. In video post-production, which is the topic being addressed in this dissertation, computer analysis of the motion of the camera can replace the currently used manual methods for correctly aligning an artificially inserted object in a scene. However, existing single view methods typically require multiple vanishing points, and therefore would fail when only one vanishing point is available. In addition, current multiple view techniques, making use of either epipolar geometry or trifocal tensor, do not exploit fully the properties of constant or known camera motion. Finally, there does not exist a general solution to the problem of synchronization of N video sequences of distinct general scenes captured by cameras undergoing similar ego-motions, which is the necessary step for video post-production among different input videos. This dissertation proposes several advancements that overcome these limitations. These advancements are used to develop an efficient framework for video analysis and post-production in multiple cameras. In the first part of the dissertation, the novel inter-image constraints are introduced that are particularly useful for scenes where minimal information is available. This result extends the current state-of-the-art in single view geometry techniques to situations where only one vanishing point is available. The property of constant or known camera motion is also described in this dissertation for applications such as calibration of a network of cameras in video surveillance systems, and Euclidean reconstruction from turn-table image sequences in the presence of zoom and focus. We then propose a new framework for the estimation and alignment of camera motions, including both simple (panning, tracking and zooming) and complex (e.g. hand-held) camera motions. Accuracy of these results is demonstrated by applying our approach to video post-production applications such as video cut-and-paste and shadow synthesis. As realistic image-based rendering problems, these applications require extreme accuracy in the estimation of camera geometry, the position and the orientation of the light source, and the photometric properties of the resulting cast shadows. In each case, the theoretical results are fully supported and illustrated by both numerical simulations and thorough experimentation on real data

    Fehlerkaschierte Bildbasierte Darstellungsverfahren

    Get PDF
    Creating photo-realistic images has been one of the major goals in computer graphics since its early days. Instead of modeling the complexity of nature with standard modeling tools, image-based approaches aim at exploiting real-world footage directly,as they are photo-realistic by definition. A drawback of these approaches has always been that the composition or combination of different sources is a non-trivial task, often resulting in annoying visible artifacts. In this thesis we focus on different techniques to diminish visible artifacts when combining multiple images in a common image domain. The results are either novel images, when dealing with the composition task of multiple images, or novel video sequences rendered in real-time, when dealing with video footage from multiple cameras.Fotorealismus ist seit jeher eines der großen Ziele in der Computergrafik. Anstatt die Komplexität der Natur mit standardisierten Modellierungswerkzeugen nachzubauen, gehen bildbasierte Ansätze den umgekehrten Weg und verwenden reale Bildaufnahmen zur Modellierung, da diese bereits per Definition fotorealistisch sind. Ein Nachteil dieser Variante ist jedoch, dass die Komposition oder Kombination mehrerer Quellbilder eine nichttriviale Aufgabe darstellt und häufig unangenehm auffallende Artefakte im erzeugten Bild nach sich zieht. In dieser Dissertation werden verschiedene Ansätze verfolgt, um Artefakte zu verhindern oder abzuschwächen, welche durch die Komposition oder Kombination mehrerer Bilder in einer gemeinsamen Bilddomäne entstehen. Im Ergebnis liefern die vorgestellten Verfahren neue Bilder oder neue Ansichten einer Bildsammlung oder Videosequenz, je nachdem, ob die jeweilige Aufgabe die Komposition mehrerer Bilder ist oder die Kombination mehrerer Videos verschiedener Kameras darstellt
    corecore