167,505 research outputs found

    Fresh Pastures

    Get PDF
    Stor

    Environmental impacts of grazed clover/grass pastures

    Get PDF
    peer-reviwedGrazed clover/grass pastures are important for animal production systems and the clover component is critical for its contribution to N inputs via biological fixation of atmospheric N2. The resource efficiency and environmental emissions for clover/grass pastures can differ from that of N-fertilised grass-only pastures. Fixation of N2 by clover uses photosynthetically- fixed carbon, whereas fertiliser N production consumes fossil fuels and has net greenhouse gas (GHG) emissions. Clover has a higher phosphorus (P) requirement than grass and where extra P fertiliser is used for clover/grass pastures the risk of P loss to waterways is greater than for grass-only pastures. Nitrogen leaching from grazed pasture increases exponentially with increased N inputs and urinary-N contributes 70 to 90% of total N leaching. However, the few studies comparing clover/grass and N-fertilised grass-only pastures at similar total N inputs indicated similar N leaching losses. Nitrous oxide emissions from grazed pastures due to N-cycling of excreta are similar for clover/grass and N-fertilised grass-only pastures at similar total N inputs. However, grass-only pasture requires the application of N fertiliser, which will result in additional specific losses that don’t occur from clover-fixed N. Thus, total N2O emissions are generally higher for N-fertilised grass pastures than for clover/grass pastures. A summary of various whole-system and life cycle assessment analyses for dairy farms from various countries indicated that at similar total N inputs, clover/grass pasture systems can be more efficient than N-fertilised grass systems per kilogram of milk produced from an energy use and GHG perspective whereas results for nutrient losses to waterways were mixed and appear to be similar for both pasture types. In practice, other management practices on farm, such as crop integration, supplementary feeding strategy and winter management, can have a larger overall effect on environmental emissions than whether the N input is derived from fertiliser N or from N2 fixation

    Denitrification by rhizobia: A possible factor contributing to nitrogen losses from soils

    Get PDF
    The intensive pastoral farming system on which New Zealand animal production is based is almost completely dependent upon the rhizobium-legurne symbiosis for the fixed nitrogen required for pasture production. The average annual fixation has been measured as 184 kg nitrogen/ha in developed lowland pastures Hoglund et cii., 1979 and about 13 kg nitrogen/ha in poorly developed bill country pastures (Grant and Lambert, 1979). From these figures it can be estimated that rhizobia in New Zealand pastures fix in excess of one million tonnes of nitrogen an nually. The current annual application of fertilizer nitrogen to pastures is about 12 500 tonnes (O'Connor, 1979)

    Sources of N2O in organic grass-clover pastures.

    Get PDF
    Organic farming practises, and in particular dairy production systems based on grass-clover pastures are becoming increasingly abundant within Danish agriculture. Grass-clover pastures may provide a mitigation option to reduce grassland nitrous oxide (N2O) emissions (Velthof et al. 1998). The objectives of this work was to examine the relationship between N2O emissions and transformations of inorganic N in organically managed grass-clover pastures of different ages. Results from the project will be used for calibration of the FASSET whole-farm nitrogen transformation model

    Pastures in Vanuatu

    Get PDF
    Livestock Production/Industries,

    Environmental impacts of grazed pastures

    Get PDF
    Large nitrogen (N) surplus and return of excreta-N in localised patches at high N rates in intensively grazed pasture systems markedly increases the risk of N losses to waterways and the atmosphere. Here are described the main routes of N input to grazed pastures, losses via N leaching, methane (CH4) and nitrous oxide (N2O) emissions. Furthermore farm N budgets and N use efficiency in relation to management strategies that can be applied to reduce N losses are discussed. Nitrate leaching increases exponentially with increased inputs and is closely related to urine patches, which also influence the leaching of dissolved organic N. High N2O emission rates in grazed pastures are related to fertiliser-N or N in excreta combined with compaction by animal treading. Grazing may considerably reduce CH3 emissions compared to indoor housing of cows. Pastures are occasionally cultivated due to sward deterioration followed by a rapid and extended period of N mineralization, contributing to an increased potential for losses. Good management of the pasture (e.g. reduced fertiliser input and reduced length of grazing) and of the mixed crop rotation during both the grassland and the arable phase (e.g. delayed ploughing time and a catch crop strategy) can considerably reduce the negative environmental impact of grazing. It is important to consider the whole farm system when evaluating environmental impact. In particular for green house gasses since the pasture may serve as a source of N2O and indirectly of CH3, but also as a sink of CO2 influenced by management practices on the farm

    Pasture Productivity Trial

    Get PDF
    Pasture is an essential component of the ration on organic dairy farms. Productivity of pastures is key to ensure the cattle have a plentiful source of high quality feed during the entire grazing season. Optimal management of pastures should include animal, plant, and soil factors. This project aims to identify weak links in the pasture system and evaluate the impact of adopting new strategies to overcome barriers to productivity. In this case, soil fertility was identified as the primary weak link to productivity

    Permanent Pastures Treatment and Management

    Get PDF
    PDF pages: 1
    corecore