992 research outputs found

    GLOBEM Dataset: Multi-Year Datasets for Longitudinal Human Behavior Modeling Generalization

    Full text link
    Recent research has demonstrated the capability of behavior signals captured by smartphones and wearables for longitudinal behavior modeling. However, there is a lack of a comprehensive public dataset that serves as an open testbed for fair comparison among algorithms. Moreover, prior studies mainly evaluate algorithms using data from a single population within a short period, without measuring the cross-dataset generalizability of these algorithms. We present the first multi-year passive sensing datasets, containing over 700 user-years and 497 unique users' data collected from mobile and wearable sensors, together with a wide range of well-being metrics. Our datasets can support multiple cross-dataset evaluations of behavior modeling algorithms' generalizability across different users and years. As a starting point, we provide the benchmark results of 18 algorithms on the task of depression detection. Our results indicate that both prior depression detection algorithms and domain generalization techniques show potential but need further research to achieve adequate cross-dataset generalizability. We envision our multi-year datasets can support the ML community in developing generalizable longitudinal behavior modeling algorithms.Comment: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Trac

    Systematic review of smartphone-based passive sensing for health and wellbeing

    Get PDF
    OBJECTIVE: To review published empirical literature on the use of smartphone-based passive sensing for health and wellbeing. MATERIAL AND METHODS: A systematic review of the English language literature was performed following PRISMA guidelines. Papers indexed in computing, technology, and medical databases were included if they were empirical, focused on health and/or wellbeing, involved the collection of data via smartphones, and described the utilized technology as passive or requiring minimal user interaction. RESULTS: Thirty-five papers were included in the review. Studies were performed around the world, with samples of up to 171 (median n = 15) representing individuals with bipolar disorder, schizophrenia, depression, older adults, and the general population. The majority of studies used the Android operating system and an array of smartphone sensors, most frequently capturing accelerometry, location, audio, and usage data. Captured data were usually sent to a remote server for processing but were shared with participants in only 40% of studies. Reported benefits of passive sensing included accurately detecting changes in status, behavior change through feedback, and increased accountability in participants. Studies reported facing technical, methodological, and privacy challenges. DISCUSSION: Studies in the nascent area of smartphone-based passive sensing for health and wellbeing demonstrate promise and invite continued research and investment. Existing studies suffer from weaknesses in research design, lack of feedback and clinical integration, and inadequate attention to privacy issues. Key recommendations relate to developing passive sensing strategies matching the problem at hand, using personalized interventions, and addressing methodological and privacy challenges. CONCLUSION: As evolving passive sensing technology presents new possibilities for health and wellbeing, additional research must address methodological, clinical integration, and privacy issues. Doing so depends on interdisciplinary collaboration between informatics and clinical experts

    From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models

    Full text link
    Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data

    Eating Behavior In-The-Wild and Its Relationship to Mental Well-Being

    Get PDF
    The motivation for eating is beyond survival. Eating serves as means for socializing, exploring cultures, etc. Computing researchers have developed various eating detection technologies that can leverage passive sensors available on smart devices to automatically infer when and, to some extent, what an individual is eating. However, despite their significance in eating literature, crucial contextual information such as meal company, type of food, location of meals, the motivation of eating episodes, the timing of meals, etc., are difficult to detect through passive means. More importantly, the applications of currently developed automated eating detection systems are limited. My dissertation addresses several of these challenges by combining the strengths of passive sensing technologies and EMAs (Ecological Momentary Assessment). EMAs are a widely adopted tool used across a variety of disciplines that can gather in-situ information about individual experiences. In my dissertation, I demonstrate the relationship between various eating contexts and the mental well-being of college students and information workers through naturalistic studies. The contributions of my dissertation are four-fold. First, I develop a real-time meal detection system that can detect meal-level episodes and trigger EMAs to gather contextual data about one’s eating episode. Second, I deploy this system in a college student population to understand their eating behavior during day-to-day life and investigate the relationship of these eating behaviors with various mental well-being outcomes. Third, based on the limitations of passive sensing systems to detect short and sporadic chewing episodes present in snacking, I develop a snacking detection system and operationalize the definition of snacking in this thesis. Finally, I investigate the causal relationship between stress levels experienced by remote information workers during their workdays and its effect on lunchtime. This dissertation situates the findings in an interdisciplinary context, including ubiquitous computing, psychology, and nutrition.Ph.D

    Functional Asymmetry: Some Right Hemisphere Functions.

    Get PDF

    Observational experiential learning facilitated by debriefing for meaningful learning : exploring student roles in simulation

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Simulation is an educational strategy used in prelicensure nursing education that has been demonstrated to effectively replace selected clinical experiences. Simulation experiences may include the use of differing roles including the active participant, who makes decisions during the simulation and the passive observer, who watches the simulation unfold. There is a lack of rigorous research testing whether students in the passive observer role during simulations demonstrate and retain knowledge similarly to those in active participant roles. In addition, differences in knowledge applied to a contextually similar case between those who actively participate and passively observe have not been studied. The purpose of this study was to explore the relationship between nursing student’s roles in simulation and cognitive knowledge demonstration, retention, and application about two contextually similar cases of respiratory distress. An experimental, pretest-multiple posttest, repeated measures study was conducted with a convenience sample of 119 baccalaureate prelicensure nursing students from a large multi-campus Southwestern university. Two knowledge instruments were administered throughout different stages of the simulation and four weeks later. Associations between role in simulation and scores on the knowledge instruments were examined using t-tests and mixed repeated measures-analysis of variance. Of the 59 active participants and 60 observers, there were no significant differences in knowledge demonstrated or retained after simulation, after debriefing, or four weeks later. Additionally, there were no significant differences in knowledge demonstrated when applied to a contextually similar case after debriefing or four weeks later between active participant and observer. Future research is needed to examine these relationships in larger and more diverse samples and different contextual clinical situations in simulation. These results will contribute to the further testing and implementation of using observation as a strategy for teaching and learning with simulation for nursing and health professions education

    Computational and Causal Approaches on Social Media and Multimodal Sensing Data: Examining Wellbeing in Situated Contexts

    Get PDF
    A core aspect of our lives is often embedded in the communities we are situated in. The interconnectedness of our interactions and experiences intertwines our situated context with our wellbeing. A better understanding of wellbeing will help us devise proactive and tailored support strategies. However, existing methodologies to assess wellbeing suffer from limitations of scale and timeliness. These limitations are surmountable by social and ubiquitous technologies. Given its ubiquity and wide use, social media can be considered a “passive sensor” that can act as a complementary source of unobtrusive, real-time, and naturalistic data to infer wellbeing. This dissertation leverages social media in concert with multimodal sensing data, which facilitate analyzing dense and longitudinal behavior at scale. This work adopts machine learning, natural language, and causal inference analysis to infer wellbeing of individuals and collectives, particularly in situated communities, such as college campuses and workplaces. Before incorporating sensing modalities in practice, we need to account for confounds. One such confound that might impact behavior change is the phenomenon of “observer effect” --- that individuals may deviate from their typical or otherwise normal behavior because of the awareness of being “monitored”. I study this problem by leveraging the potential of longitudinal and historical behavioral data through social media. Focused on a multimodal sensing study, I conduct a causal study to measure observer effect in social media behavior, and explain the observations through existing theory in psychology and social science. The findings provide recommendations to correcting biases due to observer effect in social media sensing for human behavior and wellbeing. The novelties and contributions of this dissertation are four-fold. First, I use social media data that uniquely captures the behavior of situated communities. Second, I adopt theory-driven computational and causal methods to make conclusive research claims on wellbeing dynamics. Third, I address major challenges with methods to combine social media with multimodal sensing data for a comprehensive understanding of human behavior. Fourth, I draw interpretations and explanations of online-data-driven offline inferences. This dissertation situates the findings in an interdisciplinary context, including psychology and social science, and bears implications from theoretical, practical, design, methodological, and ethical perspectives catering to various stakeholders, including researchers, practitioners, and policymakers.Ph.D
    • …
    corecore