626 research outputs found

    STG2Seq: Spatial-temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting

    Full text link
    Multi-step passenger demand forecasting is a crucial task in on-demand vehicle sharing services. However, predicting passenger demand over multiple time horizons is generally challenging due to the nonlinear and dynamic spatial-temporal dependencies. In this work, we propose to model multi-step citywide passenger demand prediction based on a graph and use a hierarchical graph convolutional structure to capture both spatial and temporal correlations simultaneously. Our model consists of three parts: 1) a long-term encoder to encode historical passenger demands; 2) a short-term encoder to derive the next-step prediction for generating multi-step prediction; 3) an attention-based output module to model the dynamic temporal and channel-wise information. Experiments on three real-world datasets show that our model consistently outperforms many baseline methods and state-of-the-art models.Comment: 7 page

    Gated Ensemble of Spatio-temporal Mixture of Experts for Multi-task Learning in Ride-hailing System

    Full text link
    Designing spatio-temporal forecasting models separately in a task-wise and city-wise manner poses a burden for the expanding transportation network companies. Therefore, a multi-task learning architecture is proposed in this study by developing gated ensemble of spatio-temporal mixture of experts network (GESME-Net) with convolutional recurrent neural network (CRNN), convolutional neural network (CNN), and recurrent neural network (RNN) for simultaneously forecasting spatio-temporal tasks in a city as well as across different cities. Furthermore, a task adaptation layer is integrated with the architecture for learning joint representation in multi-task learning and revealing the contribution of the input features utilized in prediction. The proposed architecture is tested with data from Didi Chuxing for: (i) simultaneously forecasting demand and supply-demand gap in Beijing, and (ii) simultaneously forecasting demand across Chengdu and Xian. In both scenarios, models from our proposed architecture outperformed the single-task and multi-task deep learning benchmarks and ensemble-based machine learning algorithms.Comment: arXiv admin note: text overlap with arXiv:2012.0886

    Short-term Demand Forecasting for Online Car-hailing Services using Recurrent Neural Networks

    Full text link
    Short-term traffic flow prediction is one of the crucial issues in intelligent transportation system, which is an important part of smart cities. Accurate predictions can enable both the drivers and the passengers to make better decisions about their travel route, departure time and travel origin selection, which can be helpful in traffic management. Multiple models and algorithms based on time series prediction and machine learning were applied to this issue and achieved acceptable results. Recently, the availability of sufficient data and computational power, motivates us to improve the prediction accuracy via deep-learning approaches. Recurrent neural networks have become one of the most popular methods for time series forecasting, however, due to the variety of these networks, the question that which type is the most appropriate one for this task remains unsolved. In this paper, we use three kinds of recurrent neural networks including simple RNN units, GRU and LSTM neural network to predict short-term traffic flow. The dataset from TAP30 Corporation is used for building the models and comparing RNNs with several well-known models, such as DEMA, LASSO and XGBoost. The results show that all three types of RNNs outperform the others, however, more simple RNNs such as simple recurrent units and GRU perform work better than LSTM in terms of accuracy and training time.Comment: arXiv admin note: text overlap with arXiv:1706.06279, arXiv:1804.04176 by other author
    • …
    corecore