4,467 research outputs found

    Relations between cumulants in noncommutative probability

    Full text link
    We express classical, free, Boolean and monotone cumulants in terms of each other, using combinatorics of heaps, pyramids, Tutte polynomials and permutations. We completely determine the coefficients of these formulas with the exception of the formula for classical cumulants in terms of monotone cumulants whose coefficients are only partially computed.Comment: 27 pages, 7 figures, AMS LaTe

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    Boundary Partitions in Trees and Dimers

    Full text link
    Given a finite planar graph, a grove is a spanning forest in which every component tree contains one or more of a specified set of vertices (called nodes) on the outer face. For the uniform measure on groves, we compute the probabilities of the different possible node connections in a grove. These probabilities only depend on boundary measurements of the graph and not on the actual graph structure, i.e., the probabilities can be expressed as functions of the pairwise electrical resistances between the nodes, or equivalently, as functions of the Dirichlet-to-Neumann operator (or response matrix) on the nodes. These formulae can be likened to generalizations (for spanning forests) of Cardy's percolation crossing probabilities, and generalize Kirchhoff's formula for the electrical resistance. Remarkably, when appropriately normalized, the connection probabilities are in fact integer-coefficient polynomials in the matrix entries, where the coefficients have a natural algebraic interpretation and can be computed combinatorially. A similar phenomenon holds in the so-called double-dimer model: connection probabilities of boundary nodes are polynomial functions of certain boundary measurements, and as formal polynomials, they are specializations of the grove polynomials. Upon taking scaling limits, we show that the double-dimer connection probabilities coincide with those of the contour lines in the Gaussian free field with certain natural boundary conditions. These results have direct application to connection probabilities for multiple-strand SLE_2, SLE_8, and SLE_4.Comment: 46 pages, 12 figures. v4 has additional diagrams and other minor change

    Approximating Minimum Cost Connectivity Orientation and Augmentation

    Get PDF
    We investigate problems addressing combined connectivity augmentation and orientations settings. We give a polynomial-time 6-approximation algorithm for finding a minimum cost subgraph of an undirected graph GG that admits an orientation covering a nonnegative crossing GG-supermodular demand function, as defined by Frank. An important example is (k,ℓ)(k,\ell)-edge-connectivity, a common generalization of global and rooted edge-connectivity. Our algorithm is based on a non-standard application of the iterative rounding method. We observe that the standard linear program with cut constraints is not amenable and use an alternative linear program with partition and co-partition constraints instead. The proof requires a new type of uncrossing technique on partitions and co-partitions. We also consider the problem setting when the cost of an edge can be different for the two possible orientations. The problem becomes substantially more difficult already for the simpler requirement of kk-edge-connectivity. Khanna, Naor, and Shepherd showed that the integrality gap of the natural linear program is at most 44 when k=1k=1 and conjectured that it is constant for all fixed kk. We disprove this conjecture by showing an Ω(∣V∣)\Omega(|V|) integrality gap even when k=2k=2

    Gibbs distributions for random partitions generated by a fragmentation process

    Full text link
    In this paper we study random partitions of 1,...n, where every cluster of size j can be in any of w\_j possible internal states. The Gibbs (n,k,w) distribution is obtained by sampling uniformly among such partitions with k clusters. We provide conditions on the weight sequence w allowing construction of a partition valued random process where at step k the state has the Gibbs (n,k,w) distribution, so the partition is subject to irreversible fragmentation as time evolves. For a particular one-parameter family of weight sequences w\_j, the time-reversed process is the discrete Marcus-Lushnikov coalescent process with affine collision rate K\_{i,j}=a+b(i+j) for some real numbers a and b. Under further restrictions on a and b, the fragmentation process can be realized by conditioning a Galton-Watson tree with suitable offspring distribution to have n nodes, and cutting the edges of this tree by random sampling of edges without replacement, to partition the tree into a collection of subtrees. Suitable offspring distributions include the binomial, negative binomial and Poisson distributions.Comment: 38 pages, 2 figures, version considerably modified. To appear in the Journal of Statistical Physic
    • …
    corecore