9,779 research outputs found

    Lex-Partitioning: A New Option for BDD Search

    Full text link
    For the exploration of large state spaces, symbolic search using binary decision diagrams (BDDs) can save huge amounts of memory and computation time. State sets are represented and modified by accessing and manipulating their characteristic functions. BDD partitioning is used to compute the image as the disjunction of smaller subimages. In this paper, we propose a novel BDD partitioning option. The partitioning is lexicographical in the binary representation of the states contained in the set that is represented by a BDD and uniform with respect to the number of states represented. The motivation of controlling the state set sizes in the partitioning is to eventually bridge the gap between explicit and symbolic search. Let n be the size of the binary state vector. We propose an O(n) ranking and unranking scheme that supports negated edges and operates on top of precomputed satcount values. For the uniform split of a BDD, we then use unranking to provide paths along which we partition the BDDs. In a shared BDD representation the efforts are O(n). The algorithms are fully integrated in the CUDD library and evaluated in strongly solving general game playing benchmarks.Comment: In Proceedings GRAPHITE 2012, arXiv:1210.611

    Higher-order CIS codes

    Full text link
    We introduce {\bf complementary information set codes} of higher-order. A binary linear code of length tktk and dimension kk is called a complementary information set code of order tt (tt-CIS code for short) if it has tt pairwise disjoint information sets. The duals of such codes permit to reduce the cost of masking cryptographic algorithms against side-channel attacks. As in the case of codes for error correction, given the length and the dimension of a tt-CIS code, we look for the highest possible minimum distance. In this paper, this new class of codes is investigated. The existence of good long CIS codes of order 33 is derived by a counting argument. General constructions based on cyclic and quasi-cyclic codes and on the building up construction are given. A formula similar to a mass formula is given. A classification of 3-CIS codes of length ≀12\le 12 is given. Nonlinear codes better than linear codes are derived by taking binary images of Z4\Z_4-codes. A general algorithm based on Edmonds' basis packing algorithm from matroid theory is developed with the following property: given a binary linear code of rate 1/t1/t it either provides tt disjoint information sets or proves that the code is not tt-CIS. Using this algorithm, all optimal or best known [tk,k][tk, k] codes where t=3,4,
,256t=3, 4, \dots, 256 and 1≀k≀⌊256/t⌋1 \le k \le \lfloor 256/t \rfloor are shown to be tt-CIS for all such kk and tt, except for t=3t=3 with k=44k=44 and t=4t=4 with k=37k=37.Comment: 13 pages; 1 figur

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc
    • 

    corecore