619,752 research outputs found

    Consistency of Spectral Hypergraph Partitioning under Planted Partition Model

    Full text link
    Hypergraph partitioning lies at the heart of a number of problems in machine learning and network sciences. Many algorithms for hypergraph partitioning have been proposed that extend standard approaches for graph partitioning to the case of hypergraphs. However, theoretical aspects of such methods have seldom received attention in the literature as compared to the extensive studies on the guarantees of graph partitioning. For instance, consistency results of spectral graph partitioning under the stochastic block model are well known. In this paper, we present a planted partition model for sparse random non-uniform hypergraphs that generalizes the stochastic block model. We derive an error bound for a spectral hypergraph partitioning algorithm under this model using matrix concentration inequalities. To the best of our knowledge, this is the first consistency result related to partitioning non-uniform hypergraphs.Comment: 35 pages, 2 figures, 1 tabl

    TAPER: query-aware, partition-enhancement for large, heterogenous, graphs

    Full text link
    Graph partitioning has long been seen as a viable approach to address Graph DBMS scalability. A partitioning, however, may introduce extra query processing latency unless it is sensitive to a specific query workload, and optimised to minimise inter-partition traversals for that workload. Additionally, it should also be possible to incrementally adjust the partitioning in reaction to changes in the graph topology, the query workload, or both. Because of their complexity, current partitioning algorithms fall short of one or both of these requirements, as they are designed for offline use and as one-off operations. The TAPER system aims to address both requirements, whilst leveraging existing partitioning algorithms. TAPER takes any given initial partitioning as a starting point, and iteratively adjusts it by swapping chosen vertices across partitions, heuristically reducing the probability of inter-partition traversals for a given pattern matching queries workload. Iterations are inexpensive thanks to time and space optimisations in the underlying support data structures. We evaluate TAPER on two different large test graphs and over realistic query workloads. Our results indicate that, given a hash-based partitioning, TAPER reduces the number of inter-partition traversals by around 80%; given an unweighted METIS partitioning, by around 30%. These reductions are achieved within 8 iterations and with the additional advantage of being workload-aware and usable online.Comment: 12 pages, 11 figures, unpublishe

    Window-based Streaming Graph Partitioning Algorithm

    Full text link
    In the recent years, the scale of graph datasets has increased to such a degree that a single machine is not capable of efficiently processing large graphs. Thereby, efficient graph partitioning is necessary for those large graph applications. Traditional graph partitioning generally loads the whole graph data into the memory before performing partitioning; this is not only a time consuming task but it also creates memory bottlenecks. These issues of memory limitation and enormous time complexity can be resolved using stream-based graph partitioning. A streaming graph partitioning algorithm reads vertices once and assigns that vertex to a partition accordingly. This is also called an one-pass algorithm. This paper proposes an efficient window-based streaming graph partitioning algorithm called WStream. The WStream algorithm is an edge-cut partitioning algorithm, which distributes a vertex among the partitions. Our results suggest that the WStream algorithm is able to partition large graph data efficiently while keeping the load balanced across different partitions, and communication to a minimum. Evaluation results with real workloads also prove the effectiveness of our proposed algorithm, and it achieves a significant reduction in load imbalance and edge-cut with different ranges of dataset

    Graph Partitioning Induced Phase Transitions

    Full text link
    We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree kk. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if non-optimal) that partitions the graph into equal sized connected components (clusters), the system undergoes a percolation phase transition at f=fc=12/kf=f_c=1-2/k where ff is the fraction of edges removed to partition the graph. For optimal partitioning, at the percolation threshold, we find SN0.4S \sim N^{0.4} where SS is the size of the clusters and N0.25\ell\sim N^{0.25} where \ell is their diameter. Additionally, we find that SS undergoes multiple non-percolation transitions for f<fcf<f_c
    corecore