619,752 research outputs found
Consistency of Spectral Hypergraph Partitioning under Planted Partition Model
Hypergraph partitioning lies at the heart of a number of problems in machine
learning and network sciences. Many algorithms for hypergraph partitioning have
been proposed that extend standard approaches for graph partitioning to the
case of hypergraphs. However, theoretical aspects of such methods have seldom
received attention in the literature as compared to the extensive studies on
the guarantees of graph partitioning. For instance, consistency results of
spectral graph partitioning under the stochastic block model are well known. In
this paper, we present a planted partition model for sparse random non-uniform
hypergraphs that generalizes the stochastic block model. We derive an error
bound for a spectral hypergraph partitioning algorithm under this model using
matrix concentration inequalities. To the best of our knowledge, this is the
first consistency result related to partitioning non-uniform hypergraphs.Comment: 35 pages, 2 figures, 1 tabl
TAPER: query-aware, partition-enhancement for large, heterogenous, graphs
Graph partitioning has long been seen as a viable approach to address Graph
DBMS scalability. A partitioning, however, may introduce extra query processing
latency unless it is sensitive to a specific query workload, and optimised to
minimise inter-partition traversals for that workload. Additionally, it should
also be possible to incrementally adjust the partitioning in reaction to
changes in the graph topology, the query workload, or both. Because of their
complexity, current partitioning algorithms fall short of one or both of these
requirements, as they are designed for offline use and as one-off operations.
The TAPER system aims to address both requirements, whilst leveraging existing
partitioning algorithms. TAPER takes any given initial partitioning as a
starting point, and iteratively adjusts it by swapping chosen vertices across
partitions, heuristically reducing the probability of inter-partition
traversals for a given pattern matching queries workload. Iterations are
inexpensive thanks to time and space optimisations in the underlying support
data structures. We evaluate TAPER on two different large test graphs and over
realistic query workloads. Our results indicate that, given a hash-based
partitioning, TAPER reduces the number of inter-partition traversals by around
80%; given an unweighted METIS partitioning, by around 30%. These reductions
are achieved within 8 iterations and with the additional advantage of being
workload-aware and usable online.Comment: 12 pages, 11 figures, unpublishe
Window-based Streaming Graph Partitioning Algorithm
In the recent years, the scale of graph datasets has increased to such a
degree that a single machine is not capable of efficiently processing large
graphs. Thereby, efficient graph partitioning is necessary for those large
graph applications. Traditional graph partitioning generally loads the whole
graph data into the memory before performing partitioning; this is not only a
time consuming task but it also creates memory bottlenecks. These issues of
memory limitation and enormous time complexity can be resolved using
stream-based graph partitioning. A streaming graph partitioning algorithm reads
vertices once and assigns that vertex to a partition accordingly. This is also
called an one-pass algorithm. This paper proposes an efficient window-based
streaming graph partitioning algorithm called WStream. The WStream algorithm is
an edge-cut partitioning algorithm, which distributes a vertex among the
partitions. Our results suggest that the WStream algorithm is able to partition
large graph data efficiently while keeping the load balanced across different
partitions, and communication to a minimum. Evaluation results with real
workloads also prove the effectiveness of our proposed algorithm, and it
achieves a significant reduction in load imbalance and edge-cut with different
ranges of dataset
Graph Partitioning Induced Phase Transitions
We study the percolation properties of graph partitioning on random regular
graphs with N vertices of degree . Optimal graph partitioning is directly
related to optimal attack and immunization of complex networks. We find that
for any partitioning process (even if non-optimal) that partitions the graph
into equal sized connected components (clusters), the system undergoes a
percolation phase transition at where is the fraction of
edges removed to partition the graph. For optimal partitioning, at the
percolation threshold, we find where is the size of the
clusters and where is their diameter. Additionally,
we find that undergoes multiple non-percolation transitions for
- …
