308,019 research outputs found

    Forecasting Particulate Matter Concentrations: Use of Unorganized Machines

    Full text link
    Air pollution is an environmental issue studied worldwide, as it has serious impacts on human health. Therefore, forecasting its concentration is of great importance. Then, this study presents an analysis comprising the appliance of Unorganized Machines – Extreme Learning Machines (ELM) and Echo State Networks (ESN) aiming to predict particulate matter with aerodynamic diameter less than 2.5 m (PM2.5) and less than 10 m (PM10). The databases were from Kallio and Vallilla stations in Helsinki, Finland. The computational results showed that the ELM presented best results to PM2.5, while the ESN achieved the best performance to PM10

    Coal and fuel burning effects on the atmosphere as mediated by the atmospheric electric field and galactic cosmic rays flux

    Get PDF
    Abstract: Emissions into the atmosphere of Greenhouse Gases (GHGs) and particulate matter resulting from fossil fuel burning are considered to be the main anthropogenic forcing on the global climate. We show here that the external cyclic influences of cosmic origin that modulate the earth’s climate may either reinforce or mitigate the ‘local’ terrestrial forcings. Among the external influences is cosmic radiation, whose intensity shows a cyclic variation of 11 years, accompanying the 11-year cycle of solar activity. We put forward a mechanism to explain how the emission of particulate matter into the atmosphere might influence global lightning activity. With respect to global lightning activity, we show why, during the 11-year cycle, the influence of an increase in particulate matter concentration in the atmosphere may be negligible in some years, while it will be reinforced in other years, depending on the place of the years in the cycle. We also remark that the effect on global warming of fossil fuel burning is also modulated by the cosmic ray flux, whose influence is mediated by the variation that it promotes on the cloud cover

    CleAir monitoring system for particulate matter. A case in the Napoleonic Museum in Rome

    Get PDF
    Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case

    Particulate Organic Matter as a Soil Quality Indicator of Sugarcane Plantations in East Java

    Full text link
    This study is aimed to test the hypothesis that the soil quality of sugarcane plantations closely linked to the particulate organic matter (POM) and earthworm's populations. The research was conducted at five sites in Malang, East Java. The sites were selected based on differences in average annual rainfall and two types of soil management : with and without organic input. Soil samples taken from a depth of 0-20 cm were analyzed total organic C (TOC), total N, POM-C, and POM-N and earthworm's population density and biomass. The TOC were corrected by the clay content using pedotransfer equations so obtained TOCref. The interaction between differences in annual rainfall and two types of the treatments significantly (

    Fine particulate capture device

    Get PDF
    To capture fine particulate matter in a gas such as air, a dielectric fluid is directed to the center of whichever face of a rotating disc is exposed to the air flow. The disc is comprised of two or more segments which bear opposite electrostatic potentials. As the dielectric fluid is centrifuged towards the periphery of the rotating disc, the fluid becomes charged to the same potential as the segment over which it is passing. Particulate matter is attracted to the charged segment and is captured by the fluid. The fluid then carries the captured particulate matter to a collection device such as a toroidal container disposed around the periphery of the disc. A grounded electrically-conductive ring may be disposed at the outer periphery of the disc to neutralize the captured particles and the fluid before they enter the container

    An Analysis of Particulate Matter in Central Virginia

    Get PDF
    Virginia is consistently rated as a state with high rates of asthma (Asthma and Allergy Foundation 2014). Although this respiratory disease has many causes, certain air pollutants can be a trigger. The EPA currently identifies, monitors, and regulates seven types of air pollutants. One of these pollutants, particulate matter, can occur both naturally and culturally. The primary anthropogenic cause of particulate matter is fly ash, which is formed during fossil fuel combustion. Different technology installed in the power plant can capture some of the fly ash but these methods are not entirely effective. This study focused on estimating the ratio of natural particulate matter to fly ash in central Virginia with a hypothesis that there will be a greater ratio of fly ash to natural particulate matter closer to the power plant. Determination of the ratio of fly ash and natural particulate matter will demonstrate how much particulate matter can be eliminated

    Effluent characterization from a conical pressurized fluid bed

    Get PDF
    To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials
    corecore