116 research outputs found

    Robotic friction stir welding—Seam-tracking control, force control and process supervision

    Get PDF
    Purpose – This study aims to enable robotic friction stir welding (FSW) in practice. The use of robots has hitherto been limited, because of the large contact forces necessary for FSW. These forces are detrimental for the position accuracy of the robot. In this context, it is not sufficient to rely on the robot’s internal sensors for positioning. This paper describes and evaluates a new method for overcoming this issue.Design/methodology/approach – A closed-loop robot control system for seam-tracking control and force control, running and recording data in real-time operation, was developed. The complete system was experimentally verified. External position measurements were obtained from a laser seam tracker and deviations from the seam were compensated for, using feedback of the measurements to a position controller.Findings – The proposed system was shown to be working well in overcoming position error. The system is flexible and reconfigurable for batch and short production runs. The welds were free of defects and had beneficial mechanical properties.Research limitations/implications – In the experiments, the laser seam tracker was used both for control feedback and for performance evaluation. For evaluation, it would be better to use yet another external sensor for position measurements, providing ground truth.Practical implications – These results imply that robotic FSW is practically realizable, with the accuracy requirements fulfilled.Originality/value – The method proposed in this research yields very accurate seam tracking as compared to previous research. This accuracy, in turn, is crucial for the quality of the resulting material.Keywords Friction stir welding, Robotics, Force control, Seam-tracking control, Control, Sensors, Robot weldin

    Machine Learning and System Identification for Estimation in Physical Systems

    Get PDF
    In this thesis, we draw inspiration from both classical system identification and modern machine learning in order to solve estimation problems for real-world, physical systems. The main approach to estimation and learning adopted is optimization based. Concepts such as regularization will be utilized for encoding of prior knowledge and basis-function expansions will be used to add nonlinear modeling power while keeping data requirements practical.The thesis covers a wide range of applications, many inspired by applications within robotics, but also extending outside this already wide field.Usage of the proposed methods and algorithms are in many cases illustrated in the real-world applications that motivated the research.Topics covered include dynamics modeling and estimation, model-based reinforcement learning, spectral estimation, friction modeling and state estimation and calibration in robotic machining.In the work on modeling and identification of dynamics, we develop regularization strategies that allow us to incorporate prior domain knowledge into flexible, overparameterized models. We make use of classical control theory to gain insight into training and regularization while using tools from modern deep learning. A particular focus of the work is to allow use of modern methods in scenarios where gathering data is associated with a high cost.In the robotics-inspired parts of the thesis, we develop methods that are practically motivated and make sure that they are implementable also outside the research setting. We demonstrate this by performing experiments in realistic settings and providing open-source implementations of all proposed methods and algorithms

    Passive Visual Sensing in Automatic Arc Welding

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    System Development of an Unmanned Ground Vehicle and Implementation of an Autonomous Navigation Module in a Mine Environment

    Get PDF
    There are numerous benefits to the insights gained from the exploration and exploitation of underground mines. There are also great risks and challenges involved, such as accidents that have claimed many lives. To avoid these accidents, inspections of the large mines were carried out by the miners, which is not always economically feasible and puts the safety of the inspectors at risk. Despite the progress in the development of robotic systems, autonomous navigation, localization and mapping algorithms, these environments remain particularly demanding for these systems. The successful implementation of the autonomous unmanned system will allow mine workers to autonomously determine the structural integrity of the roof and pillars through the generation of high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to any increasing hazards with proactive measures such as: sending workers to build/rebuild support structure to prevent accidents. The objective of this research is the development, implementation and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed to operate in these challenging underground mine environments. To autonomously navigate these environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical grade inertial measurement unit (IMU) for the localization and mapping through a tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping framework (LIO-SAM). The autonomous navigation module was implemented based upon the Fast likelihood-based collision avoidance with an extension to human-guided navigation and a terrain traversability analysis framework. In order to successfully operate and generate high-fidelity 3D maps, the system was rigorously tested in different environments and terrain to verify its robustness. To assess the capabilities, several localization, mapping and autonomous navigation missions were carried out in a coal mine environment. These tests allowed for the verification and tuning of the system to be able to successfully autonomously navigate and generate high-fidelity maps

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment

    Freeform 3D interactions in everyday environments

    Get PDF
    PhD ThesisPersonal computing is continuously moving away from traditional input using mouse and keyboard, as new input technologies emerge. Recently, natural user interfaces (NUI) have led to interactive systems that are inspired by our physical interactions in the real-world, and focus on enabling dexterous freehand input in 2D or 3D. Another recent trend is Augmented Reality (AR), which follows a similar goal to further reduce the gap between the real and the virtual, but predominately focuses on output, by overlaying virtual information onto a tracked real-world 3D scene. Whilst AR and NUI technologies have been developed for both immersive 3D output as well as seamless 3D input, these have mostly been looked at separately. NUI focuses on sensing the user and enabling new forms of input; AR traditionally focuses on capturing the environment around us and enabling new forms of output that are registered to the real world. The output of NUI systems is mainly presented on a 2D display, while the input technologies for AR experiences, such as data gloves and body-worn motion trackers are often uncomfortable and restricting when interacting in the real world. NUI and AR can be seen as very complimentary, and bringing these two fields together can lead to new user experiences that radically change the way we interact with our everyday environments. The aim of this thesis is to enable real-time, low latency, dexterous input and immersive output without heavily instrumenting the user. The main challenge is to retain and to meaningfully combine the positive qualities that are attributed to both NUI and AR systems. I review work in the intersecting research fields of AR and NUI, and explore freehand 3D interactions with varying degrees of expressiveness, directness and mobility in various physical settings. There a number of technical challenges that arise when designing a mixed NUI/AR system, which I will address is this work: What can we capture, and how? How do we represent the real in the virtual? And how do we physically couple input and output? This is achieved by designing new systems, algorithms, and user experiences that explore the combination of AR and NUI
    corecore