270,170 research outputs found

    Chiral Effective Theory Methods and their Application to the Structure of Hadrons from Lattice QCD

    Full text link
    For many years chiral effective theory (ChEFT) has enabled and supported lattice QCD calculations of hadron observables by allowing systematic effects from unphysical lattice parameters to be controlled. In the modern era of precision lattice simulations approaching the physical point, ChEFT techniques remain valuable tools. In this review we discuss the modern uses of ChEFT applied to lattice studies of hadron structure in the context of recent determinations of important and topical quantities. We consider muon g-2, strangeness in the nucleon, the proton radius, nucleon polarizabilities, and sigma terms relevant to the prediction of dark-matter-hadron interaction cross-sections, among others.Comment: Journal of Physics G: Nuclear and Particle Physics focus issue on Lattice QC

    Quasi-particles and their absence in photoemission spectroscopy

    Full text link
    The elucidation of Landau Fermi liquid quasi-particles and their absence in strongly correlated electron systems lies at the heart of modern research on the quantum mechanics of electrons in condensed matter. Photoemission spectroscopy of the single particle spectral function is a central experimental tool for such studies. A general paradigm of quasi-particle formation is the Fermi level resonance associated with the Kondo physics of the Anderson impurity model, an effective self consisent version of which is utilized in dynamic mean field theories of general lattice systems which may or may not literally display Kondo physics. A general paradigm of quasi-particle absence is the Luttinger liquid physics of the Tomonaga-Luttinger model. This paper presents an overview of the theoretical ideas and shows examples in photoemission spectra, taken from the work of the author and his collaborators, of quasi-particle formation in impurity and lattice Kondo and non-Kondo correlated electron systems, contrasted with quasi-particle absence in a quasi-one-dimensional system.Comment: 28 pages, 9 figures, APS Frank Isakson Prize pape

    QCD at Finite temperature and density with staggered and Wilson quarks

    Full text link
    One of the most challenging issues in particle physics is to study QCD in extreme conditions. Precise determination of the QCD phase diagram on temperature TT and chemical potential μ\mu plane will provide valuable information for quark-gluon plasma (QGP) and neutron star physics. We present results for phase structure on the (μ,T)(\mu, T) plane for lattice QCD with Wilson fermions from strong coupling Hamiltonian analysis and Kogut-Susskind Fermions from Lagrangian Monte Carlo simulations at intermediate coupling.Comment: Lattice 2004 (nonzero

    The role of Lattice QCD in flavor physics

    Full text link
    Understanding flavor physics is one of the most important tasks of particle physics today, which is motivating an extraordinary experimental and theoretical investigational effort. Important progress in this field has already been achieved in the last few years, with Lattice QCD calculations playing an essential role in this effort. I will describe some lattice contributions to the studies of flavor physics by focusing particularly on the determination of the CKM matrix and on the study of CP violation in the Standard Model.Comment: Talk presented at Lattice2004(plenary), Fermilab, June 21-26, 2004. 10 pages, 7 figure

    Baryon spectroscopy on the lattice: recent results

    Full text link
    Progress in determining the baryon spectrum using computer simulations of quarks and gluons in lattice QCD are summarized and some future plans are outlined.Comment: 5 pages, 4 figures, talk presented at the Conference on the Intersections of Particle and Nuclear Physics, New York, NY, May 19-24, 2003, submitted to American Institute of Physics Conference Proceedings. After publication, it will be found at http://proceedings.aip.org/proceedings

    Quantum entanglement of spin-1 bosons with coupled ground states in optical lattices

    Get PDF
    We examine particle entanglement, characterized by pseudo-spin squeezing, of spin-1 bosonic atoms with coupled ground states in a one-dimensional optical lattice. Both the superfluid and Mott-insulator phases are investigated separately for ferromagnetic and antiferromagnetic interactions. Mode entanglement is also discussed in the Mott insulating phase. The role of a small but nonzero angle between the polarization vectors of counter-propagating lasers forming the optical lattice on quantum correlations is investigated as well.Comment: 18 pages, 8 figures. To be published in Journal of Physics

    Recent results from lattice calculations

    Full text link
    Recent results from lattice QCD calculations relevant to particle physics phenomenology are reviewed. They include the calculations of strong coupling constant, quark masses, kaon matrix elements, and D and B meson matrix elements. Special emphasis is on the recent progress in the simulations including dynamical quarks.Comment: 13 pages, 8 figures, plenary talk at the 32nd International Conference on High-Energy Physics (ICHEP 2004), August 16-22, 2004, Beijing, Chin

    New Higgs physics from the lattice

    Get PDF
    We report the first results from our comprehensive lattice tool set to explore non-perturbative aspects of Higgs physics in the Standard Model. We demonstrate in Higgs-Yukawa models that Higgs mass lower bounds and upper bounds can be determined in lattice simulations when triviality requires the necessity of a finite cutoff to maintain non-zero interactions. The vacuum instability problem is investigated and the lattice approach is compared with the traditional renormalization group procedure which sets similar goals to correlate lower and upper Higgs mass bounds with the scale of new physics. A novel feature of our lattice simulations is the use of Ginsparg-Wilson fermions to represent the effects of Top quark loops in Higgs dynamics. The need for chiral lattice fermions is discussed and the approach is extended to full Top-Higgs-QCD dynamics. We also report results from our large NFN_F analysis of Top-Higgs Yukawa models to gain analytic insight and to verify our new lattice tool set which is deployed in the simulations. The role of non-perturbative lattice studies to investigate heavy Higgs particle scenarios is illustrated in extensions of the Standard Model.Comment: 28 pages, based on contributions from K. Holland, J. Kuti, D. Nogradi, and C. Schroeder at The XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg, German
    corecore