17,458 research outputs found

    Invertible Particle Flow-based Sequential MCMC with extension to Gaussian Mixture noise models

    Get PDF
    Sequential state estimation in non-linear and non-Gaussian state spaces has a wide range of applications in statistics and signal processing. One of the most effective non-linear filtering approaches, particle filtering, suffers from weight degeneracy in high-dimensional filtering scenarios. Several avenues have been pursued to address high-dimensionality. Among these, particle flow particle filters construct effective proposal distributions by using invertible flow to migrate particles continuously from the prior distribution to the posterior, and sequential Markov chain Monte Carlo (SMCMC) methods use a Metropolis-Hastings (MH) accept-reject approach to improve filtering performance. In this paper, we propose to combine the strengths of invertible particle flow and SMCMC by constructing a composite Metropolis-Hastings (MH) kernel within the SMCMC framework using invertible particle flow. In addition, we propose a Gaussian mixture model (GMM)-based particle flow algorithm to construct effective MH kernels for multi-modal distributions. Simulation results show that for high-dimensional state estimation example problems the proposed kernels significantly increase the acceptance rate with minimal additional computational overhead and improve estimation accuracy compared with state-of-the-art filtering algorithms

    Dynamic filtering of static dipoles in magnetoencephalography

    Get PDF
    We consider the problem of estimating neural activity from measurements of the magnetic fields recorded by magnetoencephalography. We exploit the temporal structure of the problem and model the neural current as a collection of evolving current dipoles, which appear and disappear, but whose locations are constant throughout their lifetime. This fully reflects the physiological interpretation of the model. In order to conduct inference under this proposed model, it was necessary to develop an algorithm based around state-of-the-art sequential Monte Carlo methods employing carefully designed importance distributions. Previous work employed a bootstrap filter and an artificial dynamic structure where dipoles performed a random walk in space, yielding nonphysical artefacts in the reconstructions; such artefacts are not observed when using the proposed model. The algorithm is validated with simulated data, in which it provided an average localisation error which is approximately half that of the bootstrap filter. An application to complex real data derived from a somatosensory experiment is presented. Assessment of model fit via marginal likelihood showed a clear preference for the proposed model and the associated reconstructions show better localisation
    • 

    corecore