5 research outputs found

    Particle Filter Design Using Importance Sampling for Acoustic Source Localisation and Tracking in Reverberant Environments

    Get PDF
    Sequential Monte Carlo methods have been recently proposed to deal with the problem of acoustic source localisation and tracking using an array of microphones. Previous implementations make use of the basic bootstrap particle filter, whereas a more general approach involves the concept of importance sampling. In this paper, we develop a new particle filter for acoustic source localisation using importance sampling, and compare its tracking ability with that of a bootstrap algorithm proposed previously in the literature. Experimental results obtained with simulated reverberant samples and real audio recordings demonstrate that the new algorithm is more suitable for practical applications due to its reinitialisation capabilities, despite showing a slightly lower average tracking accuracy. A real-time implementation of the algorithm also shows that the proposed particle filter can reliably track a person talking in real reverberant rooms.This paper was performed while Eric A. Lehmann was working with National ICT Australia. National ICT Australia is funded by the Australian Government’s Department of Communications, Information Technology, and the Arts, the Australian Research Council, through Backing Australia’s Ability, and the ICT Centre of Excellence programs

    Person Tracking Using Audio and Depth Cues

    Get PDF
    In this paper, a novel probabilistic Bayesian tracking scheme is proposed and applied to bimodal measurements consisting of tracking results from the depth sensor and audio recordings collected using binaural microphones. We use random finite sets to cope with varying number of tracking targets. A measurement-driven birth process is integrated to quickly localize any emerging person. A new bimodal fusion method that prioritizes the most confident modality is employed. The approach was tested on real room recordings and experimental results show that the proposed combination of audio and depth outperforms individual modalities, particularly when there are multiple people talking simultaneously and when occlusions are frequent

    Particle Filter Design Using Importance Sampling for Acoustic Source Localisation and Tracking in Reverberant Environments

    No full text
    Sequential Monte Carlo methods have been recently proposed to deal with the problem of acoustic source localisation and tracking using an array of microphones. Previous implementations make use of the basic bootstrap particle filter, whereas a more general approach involves the concept of importance sampling. In this paper, we develop a new particle filter for acoustic source localisation using importance sampling, and compare its tracking ability with that of a bootstrap algorithm proposed previously in the literature. Experimental results obtained with simulated reverberant samples and real audio recordings demonstrate that the new algorithm is more suitable for practical applications due to its reinitialisation capabilities, despite showing a slightly lower average tracking accuracy. A real-time implementation of the algorithm also shows that the proposed particle filter can reliably track a person talking in real reverberant rooms
    corecore