23,094 research outputs found

    LASS: a simple assignment model with Laplacian smoothing

    Full text link
    We consider the problem of learning soft assignments of NN items to KK categories given two sources of information: an item-category similarity matrix, which encourages items to be assigned to categories they are similar to (and to not be assigned to categories they are dissimilar to), and an item-item similarity matrix, which encourages similar items to have similar assignments. We propose a simple quadratic programming model that captures this intuition. We give necessary conditions for its solution to be unique, define an out-of-sample mapping, and derive a simple, effective training algorithm based on the alternating direction method of multipliers. The model predicts reasonable assignments from even a few similarity values, and can be seen as a generalization of semisupervised learning. It is particularly useful when items naturally belong to multiple categories, as for example when annotating documents with keywords or pictures with tags, with partially tagged items, or when the categories have complex interrelations (e.g. hierarchical) that are unknown.Comment: 20 pages, 4 figures. A shorter version appears in AAAI 201

    Automated annotation of landmark images using community contributed datasets and web resources

    Get PDF
    A novel solution to the challenge of automatic image annotation is described. Given an image with GPS data of its location of capture, our system returns a semantically-rich annotation comprising tags which both identify the landmark in the image, and provide an interesting fact about it, e.g. "A view of the Eiffel Tower, which was built in 1889 for an international exhibition in Paris". This exploits visual and textual web mining in combination with content-based image analysis and natural language processing. In the first stage, an input image is matched to a set of community contributed images (with keyword tags) on the basis of its GPS information and image classification techniques. The depicted landmark is inferred from the keyword tags for the matched set. The system then takes advantage of the information written about landmarks available on the web at large to extract a fact about the landmark in the image. We report component evaluation results from an implementation of our solution on a mobile device. Image localisation and matching oers 93.6% classication accuracy; the selection of appropriate tags for use in annotation performs well (F1M of 0.59), and it subsequently automatically identies a correct toponym for use in captioning and fact extraction in 69.0% of the tested cases; finally the fact extraction returns an interesting caption in 78% of cases

    Automated detection of extended sources in radio maps: progress from the SCORPIO survey

    Get PDF
    Automated source extraction and parameterization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper we present a new algorithm, dubbed CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parameterization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, including also different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the ASKAP-EMU survey. The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.Comment: 15 pages, 9 figure

    A Physiologically Based System Theory of Consciousness

    Get PDF
    A system which uses large numbers of devices to perform a complex functionality is forced to adopt a simple functional architecture by the needs to construct copies of, repair, and modify the system. A simple functional architecture means that functionality is partitioned into relatively equal sized components on many levels of detail down to device level, a mapping exists between the different levels, and exchange of information between components is minimized. In the instruction architecture functionality is partitioned on every level into instructions, which exchange unambiguous system information and therefore output system commands. The von Neumann architecture is a special case of the instruction architecture in which instructions are coded as unambiguous system information. In the recommendation (or pattern extraction) architecture functionality is partitioned on every level into repetition elements, which can freely exchange ambiguous information and therefore output only system action recommendations which must compete for control of system behavior. Partitioning is optimized to the best tradeoff between even partitioning and minimum cost of distributing data. Natural pressures deriving from the need to construct copies under DNA control, recover from errors, failures and damage, and add new functionality derived from random mutations has resulted in biological brains being constrained to adopt the recommendation architecture. The resultant hierarchy of functional separations can be the basis for understanding psychological phenomena in terms of physiology. A theory of consciousness is described based on the recommendation architecture model for biological brains. Consciousness is defined at a high level in terms of sensory independent image sequences including self images with the role of extending the search of records of individual experience for behavioral guidance in complex social situations. Functional components of this definition of consciousness are developed, and it is demonstrated that these components can be translated through subcomponents to descriptions in terms of known and postulated physiological mechanisms
    corecore