116,873 research outputs found
Design a photovoltaic system based on maximum power point tracking under partial shading
Photovoltaic systems have been given special attention given their long-term potential advantages. Solar panels can produce maximum power at specific operating points called maximum power points (MPP). Solar panels must work at this particular stage in order to ensure that solar panels produce maximum power and maximize efficiency. The performance of the solar photovoltaic unit is strongly affected by the level of radiation, heat and partial shading condition. The partial shedding condition is one of vectors that can affect the PV cell performance. To overcome on this problem, this project proposes photovoltaic system based on maximum power point tracking of partial shading condition. The MPPT algorithm has many methods like P&O and PSO. P&O it had limitation that is not capable to cover the multi-peaks curves. Beside that the PSO method is more effective in partial shading condition. The voltage and current of MSX60 PV module are subjected to various insolation conditions. The Particle Swarm Optimization (PSO) algorithm based MPPT has been implemented to track maximum power partial shading condition. So, in normal condition the power reach 245 W which is higher than the power under partial shading condition that reach 100 W. The PV module is designed using MATLAB/SIMULINK. The accurateness of this simulator is verified with PV module, the result is practiced during normal condition and under partial shading condition meanwhile, multiple curves of I-V and P-V will produce during normal condition and partial shading condition
Analysis of spatial fixed PV arrays configurations to maximize energy harvesting in BIPV applications
This paper presents a new approach for efficient utilization of building integrated photovoltaic (BIPV) systems under partial shading conditions in urban areas. The aim of this study is to find out the best electrical configuration by analyzing annual energy generation of the same BIPV system, in terms of nominal power, without changing physical locations of the PV modules in the PV arrays. For this purpose, the spatial structure of the PV system including the PV modules and the surrounding obstacles is taken into account on the basis of virtual reality environment. In this study, chimneys which are located on the residential roof-top area are considered to create the effect of shading over the PV array. The locations of PV modules are kept stationary, which is the main point of this paper, while comparing the performances of the configurations with the same surrounding obstacles that causes partial shading conditions. The same spatial structure with twelve distinct PV array configurations is considered. The same settling conditions on the roof-top area allow fair comparisons between PV array configurations. The payback time analysis is also performed with considering local and global maximum power points (MPPs) of PV arrays by comparing the annual energy yield of the different configurationsPeer ReviewedPostprint (author’s final draft
Analysis of the Problems Occurred Due to Partial Shading of Solar Photovoltaic Array and Probable Solutions
A solar panel is made up of solar cells where semiconductors made to react and give us a potential difference when solar energy falls on it. However, due to the internal and external interferences, many problems are faced by solar panels, like dust, partial shading by leaves or mud, etc. This paper aims at trying to find out the best possible solution for the partial shading problems when solar energy is harvested using a solar panel. The Series-Parallel configuration (SP) and the Total-Cross Tied configuration (TCT) connections of PV module have been analyzed using MATLAB
Enhanced Grey Wolf Optimizer Based MPPT Algorithm of PV System Under Partial Shaded Condition
Partial shading condition is one of the adverse phenomena which effects the power output of photovoltaic (PV) systems due to inaccurate tracking of global maximum power point. Conventional Maximum Power Point Tracking (MPPT) techniques like Perturb and Observe, Incremental Conductance and Hill Climbing can track the maximum power point effectively under uniform shaded condition, but fails under partial shaded condition. An attractive solution under partial shaded condition is application of meta-heuristic algorithms to operate at global maximum power point. Hence in this paper, an Enhanced Grey Wolf Optimizer (EGWO) based maximum power point tracking algorithm is proposed to track the global maximum power point of PV system under partial shading condition. A Mathematical model of PV system is developed under partial shaded condition using single diode model and EGWO is applied to track global maximum power point. The proposed method is programmed in MATLAB environment and simulations are carried out on 4S and 2S2P PV configurations for dynamically changing shading patterns. The results of the proposed method are analyzed and compared with GWO and PSO algorithms. It is observed that proposed method is effective in tracking global maximum power point with more accuracy in less computation time compared to other methods.Article History: Received June 12nd 2017; Received in revised form August 13rd 2017; Accepted August 15th 2017; Available onlineHow to Cite This Article: Kumar, C.H.S and Rao, R.S. (2017 Enhanced Grey Wolf Optimizer Based MPPT Algorithm of PV System Under Partial Shaded Condition. Int. Journal of Renewable Energy Development, 6(3), 203-212.https://doi.org/10.14710/ijred.6.3.203-21
Simulation of the effect of shading on monocrystalline solar module technology under hot spot condition
This paper focuses on the monocrystalline PV module technology subjected to operation conditions with some cells partially or fully shaded. A shaded cell under hot-spot condition operating at reverse bias are dissipating power instead of delivering power. A thermal model allows analyzing the temperature increase of the shaded cells of the module under hot-spot condition with or without protection by a bypass diode. A comparison of the simulation results for a monocrystalline PV module without shading and with partial or full shading is presented
Optimal design of photovoltaic shading systems for multi-story buildings
This study provides new insights into the comprehensive energy and economic performances of photovoltaic shading systems (PVSS) in multi-story buildings. A numerical shading model was developed to evaluate the shading effect from an upper PVSS row on its subjacent row. Simulation models based on EnergyPlus were developed to analyze the net electricity consumption (NEC) of PVSS with different tilt angles and widths in different climates. Benefit per capacity (BC) and the cost of benefit (CB) indicators were used to analyze the economic performances of PVSS. Finally, the optimum PVSS tilt angles and widths in different cities were obtained. Harbin, Beijing, Changsha, Kunming, and Guangzhou, were selected as representative cities for different geographical and climatic conditions. The results indicate that the optimum tilt angles for PVSS installed in Harbin, Beijing, Changsha, Kunming and Guangzhou are 55°, 50°, 40°, 40° and 30°, respectively. Optimum PVSS width for all five cities is 1.156m (7 columns of standard solar cells). PVSS installed, using the optimal design scheme, in multi-story buildings have better energy-saving potentials than either rooftop photovoltaic systems or traditional power supply modes for commercial buildings in China
A Psychoacoustic Investigation on the Effect of External Shading Devices on Building Facades
Due to energetic and natural lighting factors, building facades often present external shading devices, but the acoustic properties of such devices have not yet been well studied. This study was carried out using a full-scale model of a portion of a shading device, in a semi-anechoic chamber, using traditional and sound absorbing louvres. The psychoacoustic effects produced by the shading system were evaluated through comparisons between averaged values of loudness, roughness and sharpness levels, as well as sound pressure levels as reference. Results highlighted that the sound absorbing shading device offers good attenuation in terms of loudness, roughness and sound pressure level, with a small reduction in sharpness. The traditional shading system studied does not efficiently reduce the analysed parameters, or even worsens the situation. Several analyses of variance were carried out, one for each situation studied. The sound source position and the louvres’ tilt angle both produce statistically significant effects on almost all of the variations of the parameters studied. The analyses of the partial eta squared factors highlighted that source position and louvre tilt angle affect the variations of the parameters studied to a different degree in respect of the two types of louvres
- …
