76,583 research outputs found

    Plug & Test at System Level via Testable TLM Primitives

    Get PDF
    With the evolution of Electronic System Level (ESL) design methodologies, we are experiencing an extensive use of Transaction-Level Modeling (TLM). TLM is a high-level approach to modeling digital systems where details of the communication among modules are separated from the those of the implementation of functional units. This paper represents a first step toward the automatic insertion of testing capabilities at the transaction level by definition of testable TLM primitives. The use of testable TLM primitives should help designers to easily get testable transaction level descriptions implementing what we call a "Plug & Test" design methodology. The proposed approach is intended to work both with hardware and software implementations. In particular, in this paper we will focus on the design of a testable FIFO communication channel to show how designers are given the freedom of trading-off complexity, testability levels, and cos

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    An ab initio and force field study on the conformation and chain flexibility of the dichlorophosphazene trimer

    Get PDF
    Ab initio molecular orbital calculations have been used to study the conformation, valence electron charge density, and chain flexibility of a dichlorophosphazene trimer (CH3[NP(Cl2)]3CH3). The calculations were carried out at the restricted Hartree-Fock level with the 6-31 G* basis set. The dichlorophosphazene trimer adopts a planar transcis conformation. The valence electron charge distribution indicates strong charge separations along the backbone of the molecule, and is in agreement with Dewar's island delocalization model for bonding in linear and cyclic phosphazenes. In order to determine the height of the torsional barrier (2,5 kcal/mol), the torsional potential of a central P-N bond of the trimer was studied with a rigid rotor scan and geometry optimizations of selected rotamers. The flexibility of the P-N-P bond angle contributes significantly to the chain flexibility. Based on the results of the ab initio calculations, an empirical force field for the dichlorophosphazene trimer was developed. The energy expression includes bond stretch, angle bend, electrostatic, van der Waals, and torsional potential terms. A relaxed scan with the force field achieves good agreement with the ab initio results for the torsional potential in the vicinity of the stable conformation, and an excellent agreement with the ab initio results on changes in the P2N2P3 bond angle and the N1P2 - N2P3 dihedral angle during a full rotation around the N2 - P3 bond
    • …
    corecore