4,863 research outputs found

    What kind of field is AI?

    Get PDF

    Finding and using analogies to guide mathematical proof

    Get PDF
    This thesis is concerned with reasoning by analogy within the context of auto-mated problem solving. In particular, we consider the provision of an analogical reasoning component to a resolution theorem proving system. The framework for reasoning by analogy which we use (called Basic APS) contains three major components -the finding of analogies (analogy matching), the construction of analogical plans, and the application of the plans to guide the search of a theorem prover. We first discuss the relationship of analogy to other machine learning techniques. We then develop programs for each of the component processes of Basic APS.First we consider analogy matching. We reconstruct, analyse and crticise two previous analogy matchers. We introduce the notion of analogy heuristics in order to understand the matchers. We find that we can explain the short-comings of the matchers in terms of analogy heuristics. We then develop a new analogy matching algorithm, based on flexible application of analogy heuristics, and demonstrate its superiority to the previous matchers.We go on to consider analogical plan construction. We describe procedures for constructing a plan for the solution of a problem, given the solution of a different problem and an analogy match between the two problems. Again, we compare our procedures with corresponding ones from previous systems.We then describe procedures for the execution of analogical plans. We demon-strate the procedures on a number of example analogies. The analogies involved are straightforward for a human, but the problems themselves involve.huge search spaees, if tackled directly using resolution. By comparison with unguided search, we demonstrate the dramatic reductfon in search entaile_d by the use of an ana-logical plan.We then consider some directions for development of our analogy systems, which have not yet been implemented. Firstly, towards more flexible and power-ful execution of analogical plans. Secondly, towards an analogy system which can improve its own ability to find and apply analogies over the course of experience

    The History of the DReaM Group

    Get PDF

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    George Campbell and the ethics of pulpit oratory

    Get PDF
    George Campbell, eighteenth-century Scottish minister and rhetorician, uses a consistent model of religious and secular epistemology, which relies on experience and rational conviction. He finds that this model creates problems when applied to preaching, a field where the goal is typically practical conviction, or faith, rather than the probabilistic rational conviction. The problems arise from an inherent clash between the dedication of the rational-empiricist theologian or secular scientist to his experiential means of discovery, as contrasted with the rhetorician\u27s emphasis on the persuasive ends of his art. Campbell illustrates this problem by showing the excesses or inappropriate modes of persuasion he believes it can cause. These excesses he identifies with enthusiasm and superstition, prejudicial terms for the rhetoric and belief systems of Dissenters, Methodists, and other groups separate from or critical of the established churches of England and Scotland and for Catholics. Campbell addresses these problems by creating a pulpit ethics composed of rhetorical elements: ministerial ethos, perspicuous style, and a non-coercive context. His solution, at the last, is to subordinate successful proselytizing to rational integrity of orator and audience. He ends up, perhaps unconsciously, using rhetorical terminology to ever-so-slightly disable the rhetoric of the pulpit when it threatens to overwhelm the conditions for rational conviction

    Classes of Terminating Logic Programs

    Full text link
    Termination of logic programs depends critically on the selection rule, i.e. the rule that determines which atom is selected in each resolution step. In this article, we classify programs (and queries) according to the selection rules for which they terminate. This is a survey and unified view on different approaches in the literature. For each class, we present a sufficient, for most classes even necessary, criterion for determining that a program is in that class. We study six classes: a program strongly terminates if it terminates for all selection rules; a program input terminates if it terminates for selection rules which only select atoms that are sufficiently instantiated in their input positions, so that these arguments do not get instantiated any further by the unification; a program local delay terminates if it terminates for local selection rules which only select atoms that are bounded w.r.t. an appropriate level mapping; a program left-terminates if it terminates for the usual left-to-right selection rule; a program exists-terminates if there exists a selection rule for which it terminates; finally, a program has bounded nondeterminism if it only has finitely many refutations. We propose a semantics-preserving transformation from programs with bounded nondeterminism into strongly terminating programs. Moreover, by unifying different formalisms and making appropriate assumptions, we are able to establish a formal hierarchy between the different classes.Comment: 50 pages. The following mistake was corrected: In figure 5, the first clause for insert was insert([],X,[X]

    Constructions and justifications of a generalization of Viviani's theorem.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2013.This qualitative study actively engaged a group of eight pre-service mathematics teachers (PMTs) in an evolutionary process of generalizing and justifying. It was conducted in a developmental context and underpinned by a strong constructivist framework. Through using a set of task based activities embedded in a dynamic geometric context, this study firstly investigated how the PMTs experienced the reconstruction of Viviani’s theorem via the processes of experimentation, conjecturing, generalizing and justifying. Secondly, it was investigated how they generalized Viviani’s result for equilateral triangles, further across to a sequence of higher order equilateral (convex) polygons such as the rhombus, pentagon, and eventually to ‘any’ convex equi-sided polygon, with appropriate forms of justifications. This study also inquired how PMTs experienced counter-examples from a conceptual change perspective, and how they modified their conjecture generalizations and/or justifications, as a result of such experiences, particularly in instances where such modifications took place. Apart from constructivsm and conceptual change, the design of the activities and the analysis of students’ justifications was underpinned by the distinction of the so-called ‘explanatory’ and ‘discovery’ functions of proof. Analysis of data was grounded in an analytical–inductive method governed by an interpretive paradigm. Results of the study showed that in order for students to reconstruct Viviani’s generalization for equilateral triangles, the following was required for all students: *experimental exploration in a dynamic geometry context; *experiencing cognitive conflict to their initial conjecture; *further experimental exploration and a reformulation of their initial conjecture to finally achieve cognitive equilibrium. Although most students still required the aforementioned experiences again as they extended the Viviani generalization for equilateral triangles to equilateral convex polygons of 4 sides (rhombi) and five sides (pentagons), the need for experimental exploration gradually subsided. All PMTs expressed a need for an explanation as to why their equilateral triangle conjecture generalization was always true, and were only able to construct a logical explanation through scaffolded guidance with the means of a worksheet. The majority of the PMTs (i.e. six out of eight) extended the Viviani generalization to the rhombus on empirical grounds using Sketchpad while two did so on analogical grounds but superficially. However, as the PMTs progressed to the equilateral pentagon (convex) problem, the majority generalized on either inductive grounds or analogical grounds without the use of Sketchpad. Finally all of them generalized to any convex equi-sided polygon on logical grounds. In so doing it seems that all the PMTs finally cut off their ontological bonds with their earlier forms or processes of making generalizations. This conceptual growth pattern was also exhibited in the ways the PMTs justified each of their further generalizations, as they were progressively able to see the general proof through particular proofs, and hence justify their deductive generalization of Viviani’s theorem. This study has also shown that the phenomenon of looking back (folding back) at their prior explanations assisted the PMTs to extend their logical explanations to the general equi-sided polygon. This development of a logical explanation (proof) for the general case after looking back and carefully analysing the statements and reasons that make up the proof argument for the prior particular cases (i.e. specific equilateral convex polygons), namely pentagon, rhombus and equilateral triangle, emulates the ‘discovery’ function of proof. This suggests that the ‘explanatory’ function of proof compliments and feeds into the ‘discovery’ function of proof. Experimental exploration in a dynamic geometry context provided students with a heuristic counterexample to their initial conjectures that caused internal cognitive conflict and surprise to the extent that their cognitive equilibrium became disturbed. This paved the way for conceptual change to occur through the modification of their postulated conjecture generalizations. Furthermore, this study has shown that there exists a close link between generalization and justification. In particular, justifications in the form of logical explanations seemed to have helped the students to understand and make sense as to why their generalizations were always true, but through considering their justifications for their earlier generalizations (equilateral triangle, rhombus and pentagon) students were able to make their generalization to any convex equi-sided polygon on deductive grounds. Thus, with ‘deductive’ generalization as shown by the students, especially in the final stage, justification was woven into the generalization itself. In conclusion, from a practitioner perspective, this study has provided a descriptive analysis of a ‘guided approach’ to both the further constructions and justifications of generalizations via an evolutionary process, which mathematics teachers could use as models for their own attempts in their mathematics classrooms
    • …
    corecore