2,558 research outputs found

    On the Achievable Rates of Multihop Virtual Full-Duplex Relay Channels

    Full text link
    We study a multihop "virtual" full-duplex relay channel as a special case of a general multiple multicast relay network. For such channel, quantize-map-and-forward (QMF) (or noisy network coding (NNC)) achieves the cut-set upper bound within a constant gap where the gap grows {\em linearly} with the number of relay stages KK. However, this gap may not be negligible for the systems with multihop transmissions (i.e., a wireless backhaul operating at higher frequencies). We have recently attained an improved result to the capacity scaling where the gap grows {\em logarithmically} as logK\log{K}, by using an optimal quantization at relays and by exploiting relays' messages (decoded in the previous time slot) as side-information. In this paper, we further improve the performance of this network by presenting a mixed scheme where each relay can perform either decode-and-forward (DF) or QMF with possibly rate-splitting. We derive the achievable rate and show that the proposed scheme outperforms the QMF-optimized scheme. Furthermore, we demonstrate that this performance improvement increases with KK.Comment: To be presented at ISIT 201

    Joint power allocation for DF concatenated MIMO successive relaying scheme under network power constraints

    Get PDF
    Power efficiency is a vital consideration in wireless system. In this paper, we propose a framework for efficient power allocation in decode and forward multiple input multiple output successive relaying systems under network power constraints. Our aim is to maximize the information rate at each link by an optimal power allocation scheme via the primal dual algorithm. Then, we jointly allocate power to the source and transmitting relay under network power constraints. The simulated results show that the proposed joint power allocation scheme under network power constraint can outperform the uniform power allocation under an aggregate power constraints

    Physical-Layer Cooperation in Coded OFDM Relaying Systems

    Get PDF
    Mobile communication systems nowadays require ever-increasing data rate and coverage of wide areas. One promising approach to achieve this goal is the application of cooperative communications enabled by introducing intermediate nodes known as relays to support the transmission between terminals. By processing and forwarding the receive message at the relays, the path-loss effect between the source and the destination is mitigated. One major limit factor for relay assisted communications is that a relay cannot transmit and receive using the same physical resources. Therefore, a half-duplex constraint is commonly assumed resulting in halved spectral efficiency. To combat this drawback, two-way relaying is introduced, where two sources exchange information with each. On the other hand, due to the physical limitation of the relays, e.g., wireless sensor nodes, it's not possible to implement multiple antennas at one relay, which prohibits the application of multiple-input multiple-output (MIMO) techniques. However, when treating multiple relays as a cluster, a virtual antenna array is formed to perform MIMO techniques in a distributed manner. %This thesis aims at designing efficient one-way and two-way relaying schemes. Specifically, existing schemes from the literature are improved and new schemes are developed with the emphasis on coded orthogonal frequency division multiplexing (OFDM) transmissions. Of special interest is the application of physical-layer network coding (PLNC) for two-phase two-way relaying. In this case, a network coded message is estimated from the superimposed receive signal at the relay using PLNC schemes. The schemes are investigated based on a mutual information analysis and their performance are improved by a newly proposed phase control strategy. Furthermore, performance degradation due to system asynchrony is mitigated depending on different PLNC schemes. When multiple relays are available, novel cooperation schemes allowing information exchange within the relay cluster are proposed that facilitate distributed MIMO reception and transmission. Additionally, smart signaling approaches are presented to enable the cooperation at different levels with the cooperation overhead taken into account adequately in system performance evaluation
    corecore