77,066 research outputs found
Convexity in partial cubes: the hull number
We prove that the combinatorial optimization problem of determining the hull
number of a partial cube is NP-complete. This makes partial cubes the minimal
graph class for which NP-completeness of this problem is known and improves
some earlier results in the literature.
On the other hand we provide a polynomial-time algorithm to determine the
hull number of planar partial cube quadrangulations.
Instances of the hull number problem for partial cubes described include
poset dimension and hitting sets for interiors of curves in the plane.
To obtain the above results, we investigate convexity in partial cubes and
characterize these graphs in terms of their lattice of convex subgraphs,
improving a theorem of Handa. Furthermore we provide a topological
representation theorem for planar partial cubes, generalizing a result of
Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure
Maximal partial Latin cubes
We prove that each maximal partial Latin cube must have more than 29.289% of its cells filled and show by construction that this is a nearly tight bound. We also prove upper and lower bounds on the number of cells containing a fixed symbol in maximal partial Latin cubes and hypercubes, and we use these bounds to determine for small orders n the numbers k for which there exists a maximal partial Latin cube of order n with exactly k entries. Finally, we prove that maximal partial Latin cubes of order n exist of each size from approximately half-full (n3/2 for even n ≥ 10 and (n3 + n)/2 for odd n ≥21) to completely full, except for when either precisely 1 or 2 cells are empty
Recognizing Partial Cubes in Quadratic Time
We show how to test whether a graph with n vertices and m edges is a partial
cube, and if so how to find a distance-preserving embedding of the graph into a
hypercube, in the near-optimal time bound O(n^2), improving previous O(nm)-time
solutions.Comment: 25 pages, five figures. This version significantly expands previous
versions, including a new report on an implementation of the algorithm and
experiments with i
Hypercellular graphs: partial cubes without as partial cube minor
We investigate the structure of isometric subgraphs of hypercubes (i.e.,
partial cubes) which do not contain finite convex subgraphs contractible to the
3-cube minus one vertex (here contraction means contracting the edges
corresponding to the same coordinate of the hypercube). Extending similar
results for median and cellular graphs, we show that the convex hull of an
isometric cycle of such a graph is gated and isomorphic to the Cartesian
product of edges and even cycles. Furthermore, we show that our graphs are
exactly the class of partial cubes in which any finite convex subgraph can be
obtained from the Cartesian products of edges and even cycles via successive
gated amalgams. This decomposition result enables us to establish a variety of
results. In particular, it yields that our class of graphs generalizes median
and cellular graphs, which motivates naming our graphs hypercellular.
Furthermore, we show that hypercellular graphs are tope graphs of zonotopal
complexes of oriented matroids. Finally, we characterize hypercellular graphs
as being median-cell -- a property naturally generalizing the notion of median
graphs.Comment: 35 pages, 6 figures, added example answering Question 1 from earlier
draft (Figure 6.
Covering Partial Cubes with Zones
A partial cube is a graph having an isometric embedding in a hypercube.
Partial cubes are characterized by a natural equivalence relation on the edges,
whose classes are called zones. The number of zones determines the minimal
dimension of a hypercube in which the graph can be embedded. We consider the
problem of covering the vertices of a partial cube with the minimum number of
zones. The problem admits several special cases, among which are the problem of
covering the cells of a line arrangement with a minimum number of lines, and
the problem of finding a minimum-size fibre in a bipartite poset. For several
such special cases, we give upper and lower bounds on the minimum size of a
covering by zones. We also consider the computational complexity of those
problems, and establish some hardness results
Cubic Partial Cubes from Simplicial Arrangements
We show how to construct a cubic partial cube from any simplicial arrangement
of lines or pseudolines in the projective plane. As a consequence, we find nine
new infinite families of cubic partial cubes as well as many sporadic examples.Comment: 11 pages, 10 figure
- …
