87 research outputs found

    SODA: Detecting Covid-19 in Chest X-rays with Semi-supervised Open Set Domain Adaptation

    Full text link
    Due to the shortage of COVID-19 viral testing kits and the long waiting time, radiology imaging is used to complement the screening process and triage patients into different risk levels. Deep learning based methods have taken an active role in automatically detecting COVID-19 disease in chest x-ray images, as witnessed in many recent works in early 2020. Most of these works first train a Convolutional Neural Network (CNN) on an existing large-scale chest x-ray image dataset and then fine-tune it with a COVID-19 dataset at a much smaller scale. However, direct transfer across datasets from different domains may lead to poor performance for CNN due to two issues, the large domain shift present in the biomedical imaging datasets and the extremely small scale of the COVID-19 chest x-ray dataset. In an attempt to address these two important issues, we formulate the problem of COVID-19 chest x-ray image classification in a semi-supervised open set domain adaptation setting and propose a novel domain adaptation method, Semi-supervised Open set Domain Adversarial network (SODA). SODA is able to align the data distributions across different domains in a general domain space and also in a common subspace of source and target data. In our experiments, SODA achieves a leading classification performance compared with recent state-of-the-art models in separating COVID-19 with common pneumonia. We also present initial results showing that SODA can produce better pathology localizations in the chest x-rays.Comment: BIOKDD 2020: 19th International Workshop on Data Mining in Bioinformatic

    Selective Transfer with Reinforced Transfer Network for Partial Domain Adaptation

    Full text link
    One crucial aspect of partial domain adaptation (PDA) is how to select the relevant source samples in the shared classes for knowledge transfer. Previous PDA methods tackle this problem by re-weighting the source samples based on their high-level information (deep features). However, since the domain shift between source and target domains, only using the deep features for sample selection is defective. We argue that it is more reasonable to additionally exploit the pixel-level information for PDA problem, as the appearance difference between outlier source classes and target classes is significantly large. In this paper, we propose a reinforced transfer network (RTNet), which utilizes both high-level and pixel-level information for PDA problem. Our RTNet is composed of a reinforced data selector (RDS) based on reinforcement learning (RL), which filters out the outlier source samples, and a domain adaptation model which minimizes the domain discrepancy in the shared label space. Specifically, in the RDS, we design a novel reward based on the reconstruct errors of selected source samples on the target generator, which introduces the pixel-level information to guide the learning of RDS. Besides, we develope a state containing high-level information, which used by the RDS for sample selection. The proposed RDS is a general module, which can be easily integrated into existing DA models to make them fit the PDA situation. Extensive experiments indicate that RTNet can achieve state-of-the-art performance for PDA tasks on several benchmark datasets

    TWINs: Two Weighted Inconsistency-reduced Networks for Partial Domain Adaptation

    Full text link
    The task of unsupervised domain adaptation is proposed to transfer the knowledge of a label-rich domain (source domain) to a label-scarce domain (target domain). Matching feature distributions between different domains is a widely applied method for the aforementioned task. However, the method does not perform well when classes in the two domains are not identical. Specifically, when the classes of the target correspond to a subset of those of the source, target samples can be incorrectly aligned with the classes that exist only in the source. This problem setting is termed as partial domain adaptation (PDA). In this study, we propose a novel method called Two Weighted Inconsistency-reduced Networks (TWINs) for PDA. We utilize two classification networks to estimate the ratio of the target samples in each class with which a classification loss is weighted to adapt the classes present in the target domain. Furthermore, to extract discriminative features for the target, we propose to minimize the divergence between domains measured by the classifiers' inconsistency on target samples. We empirically demonstrate that reducing the inconsistency between two networks is effective for PDA and that our method outperforms other existing methods with a large margin in several datasets

    Learning to Transfer Examples for Partial Domain Adaptation

    Full text link
    Domain adaptation is critical for learning in new and unseen environments. With domain adversarial training, deep networks can learn disentangled and transferable features that effectively diminish the dataset shift between the source and target domains for knowledge transfer. In the era of Big Data, the ready availability of large-scale labeled datasets has stimulated wide interest in partial domain adaptation (PDA), which transfers a recognizer from a labeled large domain to an unlabeled small domain. It extends standard domain adaptation to the scenario where target labels are only a subset of source labels. Under the condition that target labels are unknown, the key challenge of PDA is how to transfer relevant examples in the shared classes to promote positive transfer, and ignore irrelevant ones in the specific classes to mitigate negative transfer. In this work, we propose a unified approach to PDA, Example Transfer Network (ETN), which jointly learns domain-invariant representations across the source and target domains, and a progressive weighting scheme that quantifies the transferability of source examples while controlling their importance to the learning task in the target domain. A thorough evaluation on several benchmark datasets shows that our approach achieves state-of-the-art results for partial domain adaptation tasks.Comment: CVPR 2019 accepte

    Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation

    Full text link
    Partial domain adaptation (PDA) attracts appealing attention as it deals with a realistic and challenging problem when the source domain label space substitutes the target domain. Most conventional domain adaptation (DA) efforts concentrate on learning domain-invariant features to mitigate the distribution disparity across domains. However, it is crucial to alleviate the negative influence caused by the irrelevant source domain categories explicitly for PDA. In this work, we propose an Adaptively-Accumulated Knowledge Transfer framework (A2^2KT) to align the relevant categories across two domains for effective domain adaptation. Specifically, an adaptively-accumulated mechanism is explored to gradually filter out the most confident target samples and their corresponding source categories, promoting positive transfer with more knowledge across two domains. Moreover, a dual distinct classifier architecture consisting of a prototype classifier and a multilayer perceptron classifier is built to capture intrinsic data distribution knowledge across domains from various perspectives. By maximizing the inter-class center-wise discrepancy and minimizing the intra-class sample-wise compactness, the proposed model is able to obtain more domain-invariant and task-specific discriminative representations of the shared categories data. Comprehensive experiments on several partial domain adaptation benchmarks demonstrate the effectiveness of our proposed model, compared with the state-of-the-art PDA methods

    Class Conditional Alignment for Partial Domain Adaptation

    Full text link
    Adversarial adaptation models have demonstrated significant progress towards transferring knowledge from a labeled source dataset to an unlabeled target dataset. Partial domain adaptation (PDA) investigates the scenarios in which the source domain is large and diverse, and the target label space is a subset of the source label space. The main purpose of PDA is to identify the shared classes between the domains and promote learning transferable knowledge from these classes. In this paper, we propose a multi-class adversarial architecture for PDA. The proposed approach jointly aligns the marginal and class-conditional distributions in the shared label space by minimaxing a novel multi-class adversarial loss function. Furthermore, we incorporate effective regularization terms to encourage selecting the most relevant subset of source domain classes. In the absence of target labels, the proposed approach is able to effectively learn domain-invariant feature representations, which in turn can enhance the classification performance in the target domain. Comprehensive experiments on three benchmark datasets Office-31, Office-Home, and Caltech-Office corroborate the effectiveness of the proposed approach in addressing different partial transfer learning tasks

    Adversarial Domain Adaptation Being Aware of Class Relationships

    Full text link
    Adversarial training is a useful approach to promote the learning of transferable representations across the source and target domains, which has been widely applied for domain adaptation (DA) tasks based on deep neural networks. Until very recently, existing adversarial domain adaptation (ADA) methods ignore the useful information from the label space, which is an important factor accountable for the complicated data distributions associated with different semantic classes. Especially, the inter-class semantic relationships have been rarely considered and discussed in the current work of transfer learning. In this paper, we propose a novel relationship-aware adversarial domain adaptation (RADA) algorithm, which first utilizes a single multi-class domain discriminator to enforce the learning of inter-class dependency structure during domain-adversarial training and then aligns this structure with the inter-class dependencies that are characterized from training the label predictor on source domain. Specifically, we impose a regularization term to penalize the structure discrepancy between the inter-class dependencies respectively estimated from domain discriminator and label predictor. Through this alignment, our proposed method makes the adversarial domain adaptation aware of the class relationships. Empirical studies show that the incorporation of class relationships significantly improves the performance on benchmark datasets

    Tackling Partial Domain Adaptation with Self-Supervision

    Full text link
    Domain adaptation approaches have shown promising results in reducing the marginal distribution difference among visual domains. They allow to train reliable models that work over datasets of different nature (photos, paintings etc), but they still struggle when the domains do not share an identical label space. In the partial domain adaptation setting, where the target covers only a subset of the source classes, it is challenging to reduce the domain gap without incurring in negative transfer. Many solutions just keep the standard domain adaptation techniques by adding heuristic sample weighting strategies. In this work we show how the self-supervisory signal obtained from the spatial co-location of patches can be used to define a side task that supports adaptation regardless of the exact label sharing condition across domains. We build over a recent work that introduced a jigsaw puzzle task for domain generalization: we describe how to reformulate this approach for partial domain adaptation and we show how it boosts existing adaptive solutions when combined with them. The obtained experimental results on three datasets supports the effectiveness of our approach

    Trained Model Fusion for Object Detection using Gating Network

    Full text link
    The major approaches of transfer learning in computer vision have tried to adapt the source domain to the target domain one-to-one. However, this scenario is difficult to apply to real applications such as video surveillance systems. As those systems have many cameras installed at each location regarded as source domains, it is difficult to identify the proper source domain. In this paper, we introduce a new transfer learning scenario that has various source domains and one target domain, assuming video surveillance system integration. Also, we propose a novel method for automatically producing a high accuracy model by fusing models trained at various source domains. In particular, we show how to apply a gating network to fuse source domains for object detection tasks, which is a new approach. We demonstrate the effectiveness of our method through experiments on traffic surveillance datasets.Comment: Accepted to ACPR 201

    Domain Alignment with Triplets

    Full text link
    Deep domain adaptation methods can reduce the distribution discrepancy by learning domain-invariant embedddings. However, these methods only focus on aligning the whole data distributions, without considering the class-level relations among source and target images. Thus, a target embeddings of a bird might be aligned to source embeddings of an airplane. This semantic misalignment can directly degrade the classifier performance on the target dataset. To alleviate this problem, we present a similarity constrained alignment (SCA) method for unsupervised domain adaptation. When aligning the distributions in the embedding space, SCA enforces a similarity-preserving constraint to maintain class-level relations among the source and target images, i.e., if a source image and a target image are of the same class label, their corresponding embeddings are supposed to be aligned nearby, and vise versa. In the absence of target labels, we assign pseudo labels for target images. Given labeled source images and pseudo-labeled target images, the similarity-preserving constraint can be implemented by minimizing the triplet loss. With the joint supervision of domain alignment loss and similarity-preserving constraint, we train a network to obtain domain-invariant embeddings with two critical characteristics, intra-class compactness and inter-class separability. Extensive experiments conducted on the two datasets well demonstrate the effectiveness of SCA.Comment: 10 pages;This version is not fully edited and will be updated soo
    • …
    corecore