2,817 research outputs found

    Transformer for Object Re-Identification: A Survey

    Full text link
    Object Re-Identification (Re-ID) aims to identify and retrieve specific objects from varying viewpoints. For a prolonged period, this field has been predominantly driven by deep convolutional neural networks. In recent years, the Transformer has witnessed remarkable advancements in computer vision, prompting an increasing body of research to delve into the application of Transformer in Re-ID. This paper provides a comprehensive review and in-depth analysis of the Transformer-based Re-ID. In categorizing existing works into Image/Video-Based Re-ID, Re-ID with limited data/annotations, Cross-Modal Re-ID, and Special Re-ID Scenarios, we thoroughly elucidate the advantages demonstrated by the Transformer in addressing a multitude of challenges across these domains. Considering the trending unsupervised Re-ID, we propose a new Transformer baseline, UntransReID, achieving state-of-the-art performance on both single-/cross modal tasks. Besides, this survey also covers a wide range of Re-ID research objects, including progress in animal Re-ID. Given the diversity of species in animal Re-ID, we devise a standardized experimental benchmark and conduct extensive experiments to explore the applicability of Transformer for this task to facilitate future research. Finally, we discuss some important yet under-investigated open issues in the big foundation model era, we believe it will serve as a new handbook for researchers in this field

    Parsing Objects at a Finer Granularity: A Survey

    Full text link
    Fine-grained visual parsing, including fine-grained part segmentation and fine-grained object recognition, has attracted considerable critical attention due to its importance in many real-world applications, e.g., agriculture, remote sensing, and space technologies. Predominant research efforts tackle these fine-grained sub-tasks following different paradigms, while the inherent relations between these tasks are neglected. Moreover, given most of the research remains fragmented, we conduct an in-depth study of the advanced work from a new perspective of learning the part relationship. In this perspective, we first consolidate recent research and benchmark syntheses with new taxonomies. Based on this consolidation, we revisit the universal challenges in fine-grained part segmentation and recognition tasks and propose new solutions by part relationship learning for these important challenges. Furthermore, we conclude several promising lines of research in fine-grained visual parsing for future research.Comment: Survey for fine-grained part segmentation and object recognition; Accepted by Machine Intelligence Research (MIR
    • …
    corecore