3,060 research outputs found

    A duopoly model with heterogeneous congestion-sensitive customers

    Get PDF
    This paper analyzes a model with multiple firms (providers), and two classes of customers. These customers classes are characterized by their attitude towards `congestion' (caused by other customers using the same resources); a firm is selected on the basis of both the prices charged by the firms, and the `congestion levels'. The model can be represented by a two-stage game: in the first providers set their prices, whereas in the second the customers choose the provider (or to not use any service at all) for given prices. We explicitly allow the providers to split their resources, in order to serve more than just one market segment. This enables us to further analyze the Paris metro pricing ({\sc Pmp}) proposal for service differentiation in the Internet. \u

    On Optimal Service Differentiation in Congested Network Markets

    Full text link
    As Internet applications have become more diverse in recent years, users having heavy demand for online video services are more willing to pay higher prices for better services than light users that mainly use e-mails and instant messages. This encourages the Internet Service Providers (ISPs) to explore service differentiations so as to optimize their profits and allocation of network resources. Much prior work has focused on the viability of network service differentiation by comparing with the case of a single-class service. However, the optimal service differentiation for an ISP subject to resource constraints has remained unsolved. In this work, we establish an optimal control framework to derive the analytical solution to an ISP's optimal service differentiation, i.e. the optimal service qualities and associated prices. By analyzing the structures of the solution, we reveal how an ISP should adjust the service qualities and prices in order to meet varying capacity constraints and users' characteristics. We also obtain the conditions under which ISPs have strong incentives to implement service differentiation and whether regulators should encourage such practices

    Market driven network neutrality and the fallacies of internet traffic quality regulation

    Get PDF
    In the U.S. paying for priority arrangements between Internet access service providers and Internet application providers to favor some traffic over other traffic is considered unreasonable discrimination. In Europe the focus is on minimum traffic quality requirements. It can be shown that neither market power nor universal service arguments can justify traffic quality regulation. In particular, heterogeneous demand for traffic quality for delay sensitive versus delay insensitive applications requires traffic quality differentiation, priority pricing and evolutionary development of minimal traffic qualities.

    Market driven network neutrality and the fallacies of Internet traffic quality regulation

    Get PDF
    In the U.S. paying for priority arrangements between Internet access service providers and Internet application providers to favor some traffic over other traf-fic is considered unreasonable discrimination. In Europe the focus is on mini-mum traffic quality requirements. It can be shown that neither market power nor universal service arguments can justify traffic quality regulation. In particular, heterogeneous demand for traffic quality for delay sensitive versus delay insen-sitive applications requires traffic quality differentiation, priority pricing and evolutionary development of minimal traffic qualities. --

    Pricing differentiated brokered internet services

    Full text link
    Price war, as an important factor in undercutting competitors and attracting customers, has spurred considerable work that analyzes such conflict situation. However, in most of these studies, quality of service (QoS), as an important decision-making criterion, has been neglected. Furthermore, with the rise of service-oriented architectures, where players may offer different levels of QoS for different prices, more studies are needed to examine the interaction among players within the service hierarchy. In this paper, we present a new approach to modeling price competition in service-oriented architectures, where there are multiple service levels. In our model, brokers, as the intermediaries between end-users and service providers, offer different QoS by adapting the service that they obtain from lower-level providers so as to match the demands of their clients to the services of providers. To maximize profit, players at each level, compete in a Bertrand game, while they offer different QoS. To maintain an oligopoly market, we then describe underlying dynamics which lead to a Bertrand game with price constraints at the providers' level. Numerical examples demonstrate the behavior of brokers and providers and the effect of price competition on their market shares.http://www.cs.bu.edu/fac/matta/Papers/sdp2016.pdfAccepted manuscrip

    The effect of competition among brokers on the quality and price of differentiated internet services

    Full text link
    Price war, as an important factor in undercutting competitors and attracting customers, has spurred considerable work that analyzes such conflict situation. However, in most of these studies, quality of service (QoS), as an important decision-making criterion, has been neglected. Furthermore, with the rise of service-oriented architectures, where players may offer different levels of QoS for different prices, more studies are needed to examine the interaction among players within the service hierarchy. In this paper, we present a new approach to modeling price competition in (virtualized) service-oriented architectures, where there are multiple service levels. In our model, brokers, as the intermediaries between end-users and service providers, offer different QoS by adapting the service that they obtain from lower-level providers so as to match the demands of their clients to the services of providers. To maximize profit, players, i.e. providers and brokers, at each level compete in a Bertrand game while they offer different QoS. To maintain an oligopoly market, we then describe underlying dynamics which lead to a Bertrand game with price constraints at the providers' level. Numerical simulations demonstrate the behavior of brokers and providers and the effect of price competition on their market shares.This work has been partly supported by National Science Foundation awards: CNS-0963974, CNS-1346688, CNS-1536090 and CNS-1647084

    Power-Law Distributions in a Two-sided Market and Net Neutrality

    Full text link
    "Net neutrality" often refers to the policy dictating that an Internet service provider (ISP) cannot charge content providers (CPs) for delivering their content to consumers. Many past quantitative models designed to determine whether net neutrality is a good idea have been rather equivocal in their conclusions. Here we propose a very simple two-sided market model, in which the types of the consumers and the CPs are {\em power-law distributed} --- a kind of distribution known to often arise precisely in connection with Internet-related phenomena. We derive mostly analytical, closed-form results for several regimes: (a) Net neutrality, (b) social optimum, (c) maximum revenue by the ISP, or (d) maximum ISP revenue under quality differentiation. One unexpected conclusion is that (a) and (b) will differ significantly, unless average CP productivity is very high
    • 

    corecore