57,869 research outputs found
Generalized decomposition and cross entropy methods for many-objective optimization
Decomposition-based algorithms for multi-objective
optimization problems have increased in popularity in the past decade. Although their convergence to the Pareto optimal front (PF) is in several instances superior to that of Pareto-based algorithms, the problem of selecting a way to distribute or guide these solutions in a high-dimensional space has not been explored. In this work, we introduce a novel concept which we call generalized
decomposition. Generalized decomposition provides a framework with which the decision maker (DM) can guide the underlying evolutionary algorithm toward specific regions of interest or the entire Pareto front with the desired distribution of Pareto optimal solutions. Additionally, it is shown that generalized decomposition simplifies many-objective problems by unifying the three performance objectives of multi-objective evolutionary algorithms – convergence to the PF, evenly distributed Pareto
optimal solutions and coverage of the entire front – to only one, that of convergence. A framework, established on generalized decomposition, and an estimation of distribution algorithm (EDA) based on low-order statistics, namely the cross-entropy method (CE), is created to illustrate the benefits of the proposed concept for many objective problems. This choice of EDA also enables
the test of the hypothesis that low-order statistics based EDAs can have comparable performance to more elaborate EDAs
Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point
Many optimization problems arising in applications have to consider several
objective functions at the same time. Evolutionary algorithms seem to be a very
natural choice for dealing with multi-objective problems as the population of
such an algorithm can be used to represent the trade-offs with respect to the
given objective functions. In this paper, we contribute to the theoretical
understanding of evolutionary algorithms for multi-objective problems. We
consider indicator-based algorithms whose goal is to maximize the hypervolume
for a given problem by distributing {\mu} points on the Pareto front. To gain
new theoretical insights into the behavior of hypervolume-based algorithms we
compare their optimization goal to the goal of achieving an optimal
multiplicative approximation ratio. Our studies are carried out for different
Pareto front shapes of bi-objective problems. For the class of linear fronts
and a class of convex fronts, we prove that maximizing the hypervolume gives
the best possible approximation ratio when assuming that the extreme points
have to be included in both distributions of the points on the Pareto front.
Furthermore, we investigate the choice of the reference point on the
approximation behavior of hypervolume-based approaches and examine Pareto
fronts of different shapes by numerical calculations
A multiobjective optimization approach to statistical mechanics
Optimization problems have been the subject of statistical physics
approximations. A specially relevant and general scenario is provided by
optimization methods considering tradeoffs between cost and efficiency, where
optimal solutions involve a compromise between both. The theory of Pareto (or
multi objective) optimization provides a general framework to explore these
problems and find the space of possible solutions compatible with the
underlying tradeoffs, known as the {\em Pareto front}. Conflicts between
constraints can lead to complex landscapes of Pareto optimal solutions with
interesting implications in economy, engineering, or evolutionary biology.
Despite their disparate nature, here we show how the structure of the Pareto
front uncovers profound universal features that can be understood in the
context of thermodynamics. In particular, our study reveals that different
fronts are connected to different classes of phase transitions, which we can
define robustly, along with critical points and thermodynamic potentials. These
equivalences are illustrated with classic thermodynamic examples.Comment: 14 pages, 8 figure
Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm
Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems.
We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort
- …
