19,607 research outputs found

    Hemodynamically informed parcellation of cerebral FMRI data

    Get PDF
    Standard detection of evoked brain activity in functional MRI (fMRI) relies on a fixed and known shape of the impulse response of the neurovascular coupling, namely the hemodynamic response function (HRF). To cope with this issue, the joint detection-estimation (JDE) framework has been proposed. This formalism enables to estimate a HRF per region but for doing so, it assumes a prior brain partition (or parcellation) regarding hemodynamic territories. This partition has to be accurate enough to recover accurate HRF shapes but has also to overcome the detection-estimation issue: the lack of hemodynamics information in the non-active positions. An hemodynamically-based parcellation method is proposed, consisting first of a feature extraction step, followed by a Gaussian Mixture-based parcellation, which considers the injection of the activation levels in the parcellation process, in order to overcome the detection-estimation issue and find the underlying hemodynamics

    Improving Reliability of Subject-Level Resting-State fMRI Parcellation with Shrinkage Estimators

    Full text link
    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often used for defining the network nodes in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage estimators of such measures, allowing the noisy subject-specific estimator to "borrow strength" in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw intervoxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. Our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets---a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute rsfMRI scans from 20 subjects---we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor cortex by up to 30%.Comment: body 21 pages, 11 figure

    Anatomical Parcellation of Cortical Language Sites

    Get PDF
    Anatomical labeling of cerebral cortical stimulation (CSM) sites is necessary for intelligent computer querying of a rich and unique experimental database examining neural substrates underlying human language production. To this end, we have developed a parcellation scheme for the lateral surface of the human cerebral cortex. We then compared results generated utilizing this approach to those generated using an alternative method implemented in the Talairach Daemon

    The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation

    Get PDF
    Complex cognitive functions are widely recognized to be the result of a number of brain regions working together as large-scale networks. Recently, complex network analysis has been used to characterize various structural properties of the large scale network organization of the brain. For example, the human brain has been found to have a modular architecture i.e. regions within the network form communities (modules) with more connections between regions within the community compared to regions outside it. The aim of this study was to examine the modular and overlapping modular architecture of the brain networks using complex network analysis. We also examined the association between neighborhood level deprivation and brain network structure – modularity and grey nodes. We compared network structure derived from anatomical MRI scans of 42 middle-aged neurologically healthy men from the least (LD) and the most deprived (MD) neighborhoods of Glasgow with their corresponding random networks. Cortical morphological covariance networks were constructed from the cortical thickness derived from the MRI scans of the brain. For a given modularity threshold, networks derived from the MD group showed similar number of modules compared to their corresponding random networks, while networks derived from the LD group had more modules compared to their corresponding random networks. The MD group also had fewer grey nodes – a measure of overlapping modular structure. These results suggest that apparent structural difference in brain networks may be driven by differences in cortical thicknesses between groups. This demonstrates a structural organization that is consistent with a system that is less robust and less efficient in information processing. These findings provide some evidence of the relationship between socioeconomic deprivation and brain network topology

    A supervised clustering approach for fMRI-based inference of brain states

    Get PDF
    We propose a method that combines signals from many brain regions observed in functional Magnetic Resonance Imaging (fMRI) to predict the subject's behavior during a scanning session. Such predictions suffer from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the signal. By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints, we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal. We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a parcellation (division of the volume) such that parcel-based signal averages best predict the target information. Dimensionality reduction is thus achieved by feature agglomeration, and the constructed features now provide a multi-scale representation of the signal. Comparisons with reference methods on both simulated and real data show that our approach yields higher prediction accuracy than standard voxel-based approaches. Moreover, the method infers an explicit weighting of the regions involved in the regression or classification task

    Brain Modularity Mediates the Relation between Task Complexity and Performance

    Full text link
    Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than as a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases and other tasks showing worse performance. A recent theoretical model (Chen & Deem, 2015) suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on more complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of simple and complex behavioral tasks. Complex and simple tasks were defined on the basis of whether they did or did not draw on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on a composite measure combining scores from the complex tasks but a positive correlation with performance on a composite measure combining scores from the simple tasks. These results and theory presented here provide a framework for linking measures of whole brain organization from network neuroscience to cognitive processing.Comment: 47 pages; 4 figure
    corecore