19,607 research outputs found
Hemodynamically informed parcellation of cerebral FMRI data
Standard detection of evoked brain activity in functional MRI (fMRI) relies
on a fixed and known shape of the impulse response of the neurovascular
coupling, namely the hemodynamic response function (HRF). To cope with this
issue, the joint detection-estimation (JDE) framework has been proposed. This
formalism enables to estimate a HRF per region but for doing so, it assumes a
prior brain partition (or parcellation) regarding hemodynamic territories. This
partition has to be accurate enough to recover accurate HRF shapes but has also
to overcome the detection-estimation issue: the lack of hemodynamics
information in the non-active positions. An hemodynamically-based parcellation
method is proposed, consisting first of a feature extraction step, followed by
a Gaussian Mixture-based parcellation, which considers the injection of the
activation levels in the parcellation process, in order to overcome the
detection-estimation issue and find the underlying hemodynamics
Improving Reliability of Subject-Level Resting-State fMRI Parcellation with Shrinkage Estimators
A recent interest in resting state functional magnetic resonance imaging
(rsfMRI) lies in subdividing the human brain into anatomically and functionally
distinct regions of interest. For example, brain parcellation is often used for
defining the network nodes in connectivity studies. While inference has
traditionally been performed on group-level data, there is a growing interest
in parcellating single subject data. However, this is difficult due to the low
signal-to-noise ratio of rsfMRI data, combined with typically short scan
lengths. A large number of brain parcellation approaches employ clustering,
which begins with a measure of similarity or distance between voxels. The goal
of this work is to improve the reproducibility of single-subject parcellation
using shrinkage estimators of such measures, allowing the noisy
subject-specific estimator to "borrow strength" in a principled manner from a
larger population of subjects. We present several empirical Bayes shrinkage
estimators and outline methods for shrinkage when multiple scans are not
available for each subject. We perform shrinkage on raw intervoxel correlation
estimates and use both raw and shrinkage estimates to produce parcellations by
performing clustering on the voxels. Our proposed method is agnostic to the
choice of clustering method and can be used as a pre-processing step for any
clustering algorithm. Using two datasets---a simulated dataset where the true
parcellation is known and is subject-specific and a test-retest dataset
consisting of two 7-minute rsfMRI scans from 20 subjects---we show that
parcellations produced from shrinkage correlation estimates have higher
reliability and validity than those produced from raw estimates. Application to
test-retest data shows that using shrinkage estimators increases the
reproducibility of subject-specific parcellations of the motor cortex by up to
30%.Comment: body 21 pages, 11 figure
Anatomical Parcellation of Cortical Language Sites
Anatomical labeling of cerebral cortical stimulation (CSM) sites is necessary for intelligent computer querying of a rich and unique experimental database examining neural substrates underlying human language production. To this end, we have developed a parcellation scheme for the lateral surface of the human cerebral cortex. We then compared results generated utilizing this approach to those generated using an alternative method implemented in the Talairach Daemon
Recommended from our members
Improving Patch-Based Convolutional Neural Networks for MRI Brain Tumor Segmentation by Leveraging Location Information.
The manual brain tumor annotation process is time consuming and resource consuming, therefore, an automated and accurate brain tumor segmentation tool is greatly in demand. In this paper, we introduce a novel method to integrate location information with the state-of-the-art patch-based neural networks for brain tumor segmentation. This is motivated by the observation that lesions are not uniformly distributed across different brain parcellation regions and that a locality-sensitive segmentation is likely to obtain better segmentation accuracy. Toward this, we use an existing brain parcellation atlas in the Montreal Neurological Institute (MNI) space and map this atlas to the individual subject data. This mapped atlas in the subject data space is integrated with structural Magnetic Resonance (MR) imaging data, and patch-based neural networks, including 3D U-Net and DeepMedic, are trained to classify the different brain lesions. Multiple state-of-the-art neural networks are trained and integrated with XGBoost fusion in the proposed two-level ensemble method. The first level reduces the uncertainty of the same type of models with different seed initializations, and the second level leverages the advantages of different types of neural network models. The proposed location information fusion method improves the segmentation performance of state-of-the-art networks including 3D U-Net and DeepMedic. Our proposed ensemble also achieves better segmentation performance compared to the state-of-the-art networks in BraTS 2017 and rivals state-of-the-art networks in BraTS 2018. Detailed results are provided on the public multimodal brain tumor segmentation (BraTS) benchmarks
The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation
Complex cognitive functions are widely recognized to be the result of a number of brain regions working together as large-scale networks. Recently, complex network analysis has been used to characterize various structural properties of the large scale network organization of the brain. For example, the human brain has been found to have a modular architecture i.e. regions within the network form communities (modules) with more connections between regions within the community compared to regions outside it. The aim of this study was to examine the modular and overlapping modular architecture of the brain networks using complex network analysis. We also examined the association between neighborhood level deprivation and brain network structure – modularity and grey nodes. We compared network structure derived from anatomical MRI scans of 42 middle-aged neurologically healthy men from the least (LD) and the most deprived (MD) neighborhoods of Glasgow with their corresponding random networks. Cortical morphological covariance networks were constructed from the cortical thickness derived from the MRI scans of the brain. For a given modularity threshold, networks derived from the MD group showed similar number of modules compared to their corresponding random networks, while networks derived from the LD group had more modules compared to their corresponding random networks. The MD group also had fewer grey nodes – a measure of overlapping modular structure. These results suggest that apparent structural difference in brain networks may be driven by differences in cortical thicknesses between groups. This demonstrates a structural organization that is consistent with a system that is less robust and less efficient in information processing. These findings provide some evidence of the relationship between socioeconomic deprivation and brain network topology
A supervised clustering approach for fMRI-based inference of brain states
We propose a method that combines signals from many brain regions observed in
functional Magnetic Resonance Imaging (fMRI) to predict the subject's behavior
during a scanning session. Such predictions suffer from the huge number of
brain regions sampled on the voxel grid of standard fMRI data sets: the curse
of dimensionality. Dimensionality reduction is thus needed, but it is often
performed using a univariate feature selection procedure, that handles neither
the spatial structure of the images, nor the multivariate nature of the signal.
By introducing a hierarchical clustering of the brain volume that incorporates
connectivity constraints, we reduce the span of the possible spatial
configurations to a single tree of nested regions tailored to the signal. We
then prune the tree in a supervised setting, hence the name supervised
clustering, in order to extract a parcellation (division of the volume) such
that parcel-based signal averages best predict the target information.
Dimensionality reduction is thus achieved by feature agglomeration, and the
constructed features now provide a multi-scale representation of the signal.
Comparisons with reference methods on both simulated and real data show that
our approach yields higher prediction accuracy than standard voxel-based
approaches. Moreover, the method infers an explicit weighting of the regions
involved in the regression or classification task
Brain Modularity Mediates the Relation between Task Complexity and Performance
Recent work in cognitive neuroscience has focused on analyzing the brain as a
network, rather than as a collection of independent regions. Prior studies
taking this approach have found that individual differences in the degree of
modularity of the brain network relate to performance on cognitive tasks.
However, inconsistent results concerning the direction of this relationship
have been obtained, with some tasks showing better performance as modularity
increases and other tasks showing worse performance. A recent theoretical model
(Chen & Deem, 2015) suggests that these inconsistencies may be explained on the
grounds that high-modularity networks favor performance on simple tasks whereas
low-modularity networks favor performance on more complex tasks. The current
study tests these predictions by relating modularity from resting-state fMRI to
performance on a set of simple and complex behavioral tasks. Complex and simple
tasks were defined on the basis of whether they did or did not draw on
executive attention. Consistent with predictions, we found a negative
correlation between individuals' modularity and their performance on a
composite measure combining scores from the complex tasks but a positive
correlation with performance on a composite measure combining scores from the
simple tasks. These results and theory presented here provide a framework for
linking measures of whole brain organization from network neuroscience to
cognitive processing.Comment: 47 pages; 4 figure
- …
