194,982 research outputs found

    Development of an algebraic turbulence model for analysis of propulsion flows

    Get PDF
    A simple turbulence model that will be applicable to propulsion flows having both wall bounded and unbounded regions was developed and installed within the PARC Navier-Stokes code by linking two existing algebraic turbulence models. The first is the Modified Mixing Length (MML) model which is optimized for wall bounded flows. The second is the Thomas model, the standard algebraic turbulence model in PARC which has been used to calculate both bounded and unbounded turbulent flows but was optimized for the latter. This paper discusses both models and the method employed to link them into one model (referred to as the MMLT model). The PARC code with the MMLT model was applied to two dimensional turbulent flows over a flat plate and over a backward facing step to validate and optimize the model and to compare its predictions to those obtained with the three turbulence models already available in PARC

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate γ\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures

    Plans for Hadronic Structure Studies at J-PARC

    Full text link
    Hadron-physics projects at J-PARC are explained. The J-PARC is the most-intense hadron-beam facility in the multi-GeV high-energy region. By using secondary beams of kaons, pions, and others as well as the primary-beam proton, various hadron projects are planned. First, some of approved experiments are introduced on strangeness hadron physics and hadron-mass modifications in nuclear medium. Second, future possibilities are discussed on hadron-structure physics, including structure functions of hadrons, spin physics, and high-energy hadron reactions in nuclear medium. The second part is discussed in more details because this is an article in the hadron-structure session.Comment: 10 pages, LaTeX, 20 eps files, to be published in Journal of Physics: Conference Series (JPCS), Proceedings of the 24th International Nuclear Physics Conference (INPC 2010), Vancouver, Canada, July 4 - 9, 201
    corecore