1,338 research outputs found

    On the convergence of stochastic MPC to terminal modes of operation

    Full text link
    The stability of stochastic Model Predictive Control (MPC) subject to additive disturbances is often demonstrated in the literature by constructing Lyapunov-like inequalities that guarantee closed-loop performance bounds and boundedness of the state, but convergence to a terminal control law is typically not shown. In this work we use results on general state space Markov chains to find conditions that guarantee convergence of disturbed nonlinear systems to terminal modes of operation, so that they converge in probability to a priori known terminal linear feedback laws and achieve time-average performance equal to that of the terminal control law. We discuss implications for the convergence of control laws in stochastic MPC formulations, in particular we prove convergence for two formulations of stochastic MPC

    Data-driven Economic NMPC using Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a powerful tool to perform data-driven optimal control without relying on a model of the system. However, RL struggles to provide hard guarantees on the behavior of the resulting control scheme. In contrast, Nonlinear Model Predictive Control (NMPC) and Economic NMPC (ENMPC) are standard tools for the closed-loop optimal control of complex systems with constraints and limitations, and benefit from a rich theory to assess their closed-loop behavior. Unfortunately, the performance of (E)NMPC hinges on the quality of the model underlying the control scheme. In this paper, we show that an (E)NMPC scheme can be tuned to deliver the optimal policy of the real system even when using a wrong model. This result also holds for real systems having stochastic dynamics. This entails that ENMPC can be used as a new type of function approximator within RL. Furthermore, we investigate our results in the context of ENMPC and formally connect them to the concept of dissipativity, which is central for the ENMPC stability. Finally, we detail how these results can be used to deploy classic RL tools for tuning (E)NMPC schemes. We apply these tools on both a classical linear MPC setting and a standard nonlinear example from the ENMPC literature

    Approximation of Continuous-Time Infinite-Horizon Optimal Control Problems Arising in Model Predictive Control - Supplementary Notes

    Full text link
    These notes present preliminary results regarding two different approximations of linear infinite-horizon optimal control problems arising in model predictive control. Input and state trajectories are parametrized with basis functions and a finite dimensional representation of the dynamics is obtained via a Galerkin approach. It is shown that the two approximations provide lower, respectively upper bounds on the optimal cost of the underlying infinite dimensional optimal control problem. These bounds get tighter as the number of basis functions is increased. In addition, conditions guaranteeing convergence to the cost of the underlying problem are provided.Comment: Supplementary notes, 10 page
    corecore