985,342 research outputs found
Phase-Induced (In)-Stability in Coupled Parametric Oscillators
We report results on a model of two coupled oscillators that undergo periodic
parametric modulations with a phase difference . Being to a large
extent analytically solvable, the model reveals a rich dependence of
the regions of parametric resonance. In particular, the intuitive notion that
anti-phase modulations are less prone to parametric resonance is confirmed for
sufficiently large coupling and damping. We also compare our results to a
recently reported mean field model of collective parametric instability,
showing that the two-oscillator model can capture much of the qualitative
behavior of the infinite system.Comment: 19 pages, 8 figures; a version with better quality figures can be
found in http://hypatia.ucsd.edu/~mauro/English/publications.htm
Non-parametric Bayesian modeling of complex networks
Modeling structure in complex networks using Bayesian non-parametrics makes
it possible to specify flexible model structures and infer the adequate model
complexity from the observed data. This paper provides a gentle introduction to
non-parametric Bayesian modeling of complex networks: Using an infinite mixture
model as running example we go through the steps of deriving the model as an
infinite limit of a finite parametric model, inferring the model parameters by
Markov chain Monte Carlo, and checking the model's fit and predictive
performance. We explain how advanced non-parametric models for complex networks
can be derived and point out relevant literature
Semi-parametric regression: Efficiency gains from modeling the nonparametric part
It is widely admitted that structured nonparametric modeling that circumvents
the curse of dimensionality is important in nonparametric estimation. In this
paper we show that the same holds for semi-parametric estimation. We argue that
estimation of the parametric component of a semi-parametric model can be
improved essentially when more structure is put into the nonparametric part of
the model. We illustrate this for the partially linear model, and investigate
efficiency gains when the nonparametric part of the model has an additive
structure. We present the semi-parametric Fisher information bound for
estimating the parametric part of the partially linear additive model and
provide semi-parametric efficient estimators for which we use a smooth
backfitting technique to deal with the additive nonparametric part. We also
present the finite sample performances of the proposed estimators and analyze
Boston housing data as an illustration.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ296 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Local Nonlinear Least Squares Estimation: Using Parametric Information Nonparametrically
We introduce a new kernel smoother for nonparametric regression that uses prior information on regression shape in the form of a parametric model. In effect, we nonparametrically encompass the parametric model. We derive pointwise and uniform consistency and the asymptotic distribution of our procedure. It has superior performance to the usual kernel estimators at or near the parametric model. It is particularly well motivated for binary data using the probit or logit parametric model as a base. We include an application to the Horowitz (1993) transport choice dataset.Kernel, nonparametric regression, parametric regression, binary choice
Pseudospectral Model Predictive Control under Partially Learned Dynamics
Trajectory optimization of a controlled dynamical system is an essential part
of autonomy, however many trajectory optimization techniques are limited by the
fidelity of the underlying parametric model. In the field of robotics, a lack
of model knowledge can be overcome with machine learning techniques, utilizing
measurements to build a dynamical model from the data. This paper aims to take
the middle ground between these two approaches by introducing a semi-parametric
representation of the underlying system dynamics. Our goal is to leverage the
considerable information contained in a traditional physics based model and
combine it with a data-driven, non-parametric regression technique known as a
Gaussian Process. Integrating this semi-parametric model with model predictive
pseudospectral control, we demonstrate this technique on both a cart pole and
quadrotor simulation with unmodeled damping and parametric error. In order to
manage parametric uncertainty, we introduce an algorithm that utilizes Sparse
Spectrum Gaussian Processes (SSGP) for online learning after each rollout. We
implement this online learning technique on a cart pole and quadrator, then
demonstrate the use of online learning and obstacle avoidance for the dubin
vehicle dynamics.Comment: Accepted but withdrawn from AIAA Scitech 201
A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case
We consider a linear elliptic partial differential equation (PDE) with a
generic uniformly bounded parametric coefficient. The solution to this PDE
problem is approximated in the framework of stochastic Galerkin finite element
methods. We perform a posteriori error analysis of Galerkin approximations and
derive a reliable and efficient estimate for the energy error in these
approximations. Practical versions of this error estimate are discussed and
tested numerically for a model problem with non-affine parametric
representation of the coefficient. Furthermore, we use the error reduction
indicators derived from spatial and parametric error estimators to guide an
adaptive solution algorithm for the given parametric PDE problem. The
performance of the adaptive algorithm is tested numerically for model problems
with two different non-affine parametric representations of the coefficient.Comment: 32 pages, 4 figures, 6 table
- …
