2 research outputs found

    Formant analysis in dysphonic patients and automatic Arabic digit speech recognition

    Get PDF
    <p>Abstract</p> <p>Background and objective</p> <p>There has been a growing interest in objective assessment of speech in dysphonic patients for the classification of the type and severity of voice pathologies using automatic speech recognition (ASR). The aim of this work was to study the accuracy of the conventional ASR system (with Mel frequency cepstral coefficients (MFCCs) based front end and hidden Markov model (HMM) based back end) in recognizing the speech characteristics of people with pathological voice.</p> <p>Materials and methods</p> <p>The speech samples of 62 dysphonic patients with six different types of voice disorders and 50 normal subjects were analyzed. The Arabic spoken digits were taken as an input. The distribution of the first four formants of the vowel /a/ was extracted to examine deviation of the formants from normal.</p> <p>Results</p> <p>There was 100% recognition accuracy obtained for Arabic digits spoken by normal speakers. However, there was a significant loss of accuracy in the classifications while spoken by voice disordered subjects. Moreover, no significant improvement in ASR performance was achieved after assessing a subset of the individuals with disordered voices who underwent treatment.</p> <p>Conclusion</p> <p>The results of this study revealed that the current ASR technique is not a reliable tool in recognizing the speech of dysphonic patients.</p

    Optimizing laryngeal pathology detection by using combined cepstral features

    Get PDF
    ABSTRACT There are several diseases that affect the human voice quality which can be organic or neurological. Acoustic analysis of voice features can be used as a complementary and noninvasive tool for the diagnosis of laryngeal pathologies. The degree of reliability and effectiveness of the discriminating process depends on the appropriate acoustic feature extraction. This work presents a parametric method based on cepstral features to discriminate pathological voices of speakers affected by vocal fold edema and paralysis from healthy voices. Cepstral, weighted cepstral, delta cepstral, and weighted delta cepstral coefficients are obtained from speech signals. A Vector Quantization is carried out individually for each feature in the classification process, associated with a distortion measurement. The goal is to evaluate a performance of a classifier based on the individual and combined cepstral features. The average, the product and the weighted average are the different combination strategies applied yielding a multiple classifier that is more efficient than each individual technique. To assess the accuracy of the system, 153 speech files of sustained vowel /ah/ (53 healthy, 44 vocal fold edema and 56 paralysis) of the Disordered Voice Database from Massachusetts Eye and Ear Infirmary (MEEI) are used. Results show that the employed parameters are complementary and they can be used to detect vocal disorders caused by the presence of vocal fold pathologies
    corecore