1,263 research outputs found

    Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip

    Get PDF
    We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of “shutting down”, i.e. the self-terminating behavior that is a very common and detrimental occurrence in externally pumped OPOs. Further, our scheme consistently produces very wide bandwidth (>300nm, limited by our experimental set-up) combs that oscillate at a spacing equal to the FSR of the micro cavity resonance

    A proposal for highly tunable optical parametric oscillation in silicon micro-resonators

    Get PDF
    We propose a novel scheme for continuous-wave pumped optical parametric oscillation (OPO) inside silicon micro-resonators. The proposed scheme not only requires a relative low lasing threshold, but also exhibits extremely broad tunability extending from the telecom band to mid infrared

    Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device

    Full text link
    We report the first demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition edge sensors. We measure 1.0(1)1.0(1)~dB of broadband quadrature squeezing (4{\sim}4~dB inferred on-chip) and 1.5(3)1.5(3)~dB of photon number difference squeezing (7{\sim}7~dB inferred on-chip). Nearly-single temporal mode operation is achieved, with raw unheralded second-order correlations g(2)g^{(2)} as high as 1.87(1)1.87(1) measured (1.9{\sim}1.9~when corrected for noise). Multi-photon events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.Comment: Significant improvements and updates to photon number squeezing results and discussions, including results on single temporal mode operatio

    Harnessing optical micro-combs for microwave photonics

    Full text link
    In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference

    Integrated frequency comb source of heralded single photons

    Get PDF
    We report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels

    High-Performance Silicon-Based Multiple Wavelength Source

    Full text link
    We demonstrate a stable CMOS-compatible on-chip multiple-wavelength source by filtering and modulating individual lines from a frequency comb generated by a microring resonator optical parametric oscillator.. We show comb operation in a low-noise state that is stable and usable for many hours. Bit-error rate measurements demonstrate negligible power penalty from six independent frequencies when compared to a tunable diode laser baseline. Open eye diagrams confirm the fidelity of the 10 Gb/s data transmitted at the comb frequencies and the suitability of this device for use as a fully integrated silicon-based WDM source.Comment: 3 pages, 3 figure

    Efficient telecom-to-visible spectral translation through ultra-low power nonlinear nanophotonics

    Full text link
    The ability to spectrally translate lightwave signals in a compact, low-power platform is at the heart of the promise of nonlinear nanophotonic technologies. For example, a device to link the telecommunications band with visible and short near-infrared wavelengths can enable a connection between high-performance chip-integrated lasers based on scalable nanofabrication technology with atomic systems used for time and frequency metrology. While second-order nonlinear (\chi^(2)) systems are the natural approach for bridging such large spectral gaps, here we show that third-order nonlinear (chi^(3)) systems, despite their typically much weaker nonlinear response, can realize spectral translation with unprecedented performance. By combining resonant enhancement with nanophotonic mode engineering in a silicon nitride microring resonator, we demonstrate efficient spectral translation of a continuous-wave signal from the telecom band (~ 1550 nm) to the visible band (~ 650 nm) through cavity-enhanced four-wave mixing. We achieve such translation over a wide spectral range >250 THz with a translation efficiency of (30.1 +/- 2.8) % and using an ultra-low pump power of (329 +/- 13) uW. The translation efficiency projects to (274 +/- 28) % at 1 mW and is more than an order of magnitude larger than what has been achieved in current nanophotonic devices
    corecore