15 research outputs found

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions

    Architectures in parametric component-based systems: Qualitative and quantitative modelling

    Get PDF
    One of the key aspects in component-based design is specifying the software architecture that characterizes the topology and the permissible interactions of the components of a system. To achieve well-founded design there is need to address both the qualitative and non-functional aspects of architectures. In this paper we study the qualitative and quantitative formal modelling of architectures applied on parametric component-based systems, that consist of an unknown number of instances of each component. Specifically, we introduce an extended propositional interaction logic and investigate its first-order level which serves as a formal language for the interactions of parametric systems. Our logics achieve to encode the execution order of interactions, which is a main feature in several important architectures, as well as to model recursive interactions. Moreover, we prove the decidability of equivalence, satisfiability, and validity of first-order extended interaction logic formulas, and provide several examples of formulas describing well-known architectures. We show the robustness of our theory by effectively extending our results for parametric weighted architectures. For this, we study the weighted counterparts of our logics over a commutative semiring, and we apply them for modelling the quantitative aspects of concrete architectures. Finally, we prove that the equivalence problem of weighted first-order extended interaction logic formulas is decidable in a large class of semirings, namely the class (of subsemirings) of skew fields.Comment: 53 pages, 11 figure

    Structural Invariants for the Verification of Systems with Parameterized Architectures

    Full text link
    We consider parameterized concurrent systems consisting of a finite but unknown number of components, obtained by replicating a given set of finite state automata. Components communicate by executing atomic interactions whose participants update their states simultaneously. We introduce an interaction logic to specify both the type of interactions (e.g.\ rendez-vous, broadcast) and the topology of the system (e.g.\ pipeline, ring). The logic can be easily embedded in monadic second order logic of finitely many successors, and is therefore decidable. Proving safety properties of such a parameterized system, like deadlock freedom or mutual exclusion, requires to infer an inductive invariant that contains all reachable states of all system instances, and no unsafe state. We present a method to automatically synthesize inductive invariants directly from the formula describing the interactions, without costly fixed point iterations. We experimentally prove that this invariant is strong enough to verify safety properties of a large number of systems including textbook examples (dining philosophers, synchronization schemes), classical mutual exclusion algorithms, cache-coherence protocols and self-stabilization algorithms, for an arbitrary number of components.Comment: preprint; to be published in the proceedings of TACAS2

    Parameterized Verification of Systems with Global Synchronization and Guards

    Get PDF
    Inspired by distributed applications that use consensus or other agreement protocols for global coordination, we define a new computational model for parameterized systems that is based on a general global synchronization primitive and allows for global transition guards. Our model generalizes many existing models in the literature, including broadcast protocols and guarded protocols. We show that reachability properties are decidable for systems without guards, and give sufficient conditions under which they remain decidable in the presence of guards. Furthermore, we investigate cutoffs for reachability properties and provide sufficient conditions for small cutoffs in a number of cases that are inspired by our target applications.Comment: Accepted at CAV 202

    Structural Invariants for the Verification of Systems with Parameterized Architectures

    Get PDF
    We consider parameterized concurrent systems consisting of a finite but unknown number of components, obtained by replicating a given set of finite state automata. Components communicate by executing atomic interactions whose participants update their states simultaneously. We introduce an interaction logic to specify both the type of interactions (e.g. rendezvous , broadcast) and the topology of the system (e.g. pipeline, ring). The logic can be easily embedded in monadic second logic of κ ≥ 1 successors (WSκS), and is therefore decidable. Proving safety properties of such a parameterized system, like deadlock freedom or mutual exclusion, requires to infer an inductive invariant that contains all reachable states of all system instances, and no unsafe state. We present a method to automatically synthesize inductive invariants directly from the formula describing the interactions , without costly fixed point iterations. We experimentally prove that this invariant is strong enough to verify many textbook examples, such as dining philosophers, mutual exclusion protocols, and concurrent systems with preemption and priorities, for an arbitrary number of components

    Structural Invariants for Parametric Verification of Systems with Almost Linear Architectures

    Get PDF
    We consider concurrent systems consisting of a finite but unknown number of components , that are replicated instances of a given set of finite state automata. The components communicate by executing interactions which are simultaneous atomic state changes of a set of components. We specify both the type of interactions (e.g. rendezvous , broadcast) and the topology (i.e. architecture) of the system (e.g. pipeline, ring) via a decidable interaction logic, which is embedded in the classical weak sequential calculus of one successor (WS1S). Proving correctness of such system for safety properties , such as deadlock freedom or mutual exclusion, requires the inference of an induc-tive invariant that subsumes the set of reachable states and avoids the unsafe states. Our method synthesizes such invariants directly from the formula describing the interactions , without costly fixed point iterations. We applied our technique to the verification of several textbook examples, such as dining philosophers, mutual exclusion protocols and concurrent systems with preemption and priorities

    Verification of parameterized communicating automata via split-width

    Get PDF
    International audienceWe study verification problems for distributed systems communicating via unbounded FIFO channels. The number of processes of the system as well as the communication topology are not fixed a priori. Systems are given by parameterized communicating automata (PCAs) which can be run on any communication topology of bounded degree, with arbitrarily many processes. Such systems are Turing powerful so we concentrate on under-approximate verification. We extend the notion of split-width to behaviors of PCAs. We show that emptiness, reachability and model-checking problems of PCAs are decidable when restricted to behaviors of bounded split-width. Reachability and emptiness are Exptime-complete, but only polynomial in the size of the PCA. We also describe several concrete classes of bounded split-width, for which we prove similar results
    corecore