5 research outputs found

    Efficient Sentence Embedding via Semantic Subspace Analysis

    Full text link
    A novel sentence embedding method built upon semantic subspace analysis, called semantic subspace sentence embedding (S3E), is proposed in this work. Given the fact that word embeddings can capture semantic relationship while semantically similar words tend to form semantic groups in a high-dimensional embedding space, we develop a sentence representation scheme by analyzing semantic subspaces of its constituent words. Specifically, we construct a sentence model from two aspects. First, we represent words that lie in the same semantic group using the intra-group descriptor. Second, we characterize the interaction between multiple semantic groups with the inter-group descriptor. The proposed S3E method is evaluated on both textual similarity tasks and supervised tasks. Experimental results show that it offers comparable or better performance than the state-of-the-art. The complexity of our S3E method is also much lower than other parameterized models.Comment: 7 pages, 2 figure

    Structural-Aware Sentence Similarity with Recursive Optimal Transport

    Full text link
    Measuring sentence similarity is a classic topic in natural language processing. Light-weighted similarities are still of particular practical significance even when deep learning models have succeeded in many other tasks. Some light-weighted similarities with more theoretical insights have been demonstrated to be even stronger than supervised deep learning approaches. However, the successful light-weighted models such as Word Mover's Distance [Kusner et al., 2015] or Smooth Inverse Frequency [Arora et al., 2017] failed to detect the difference from the structure of sentences, i.e. order of words. To address this issue, we present Recursive Optimal Transport (ROT) framework to incorporate the structural information with the classic OT. Moreover, we further develop Recursive Optimal Similarity (ROTS) for sentences with the valuable semantic insights from the connections between cosine similarity of weighted average of word vectors and optimal transport. ROTS is structural-aware and with low time complexity compared to optimal transport. Our experiments over 20 sentence textural similarity (STS) datasets show the clear advantage of ROTS over all weakly supervised approaches. Detailed ablation study demonstrate the effectiveness of ROT and the semantic insights.Comment: 7 pages, 2 figure

    Universal Sentence Representation Learning with Conditional Masked Language Model

    Full text link
    This paper presents a novel training method, Conditional Masked Language Modeling (CMLM), to effectively learn sentence representations on large scale unlabeled corpora. CMLM integrates sentence representation learning into MLM training by conditioning on the encoded vectors of adjacent sentences. Our English CMLM model achieves state-of-the-art performance on SentEval, even outperforming models learned using (semi-)supervised signals. As a fully unsupervised learning method, CMLM can be conveniently extended to a broad range of languages and domains. We find that a multilingual CMLM model co-trained with bitext retrieval~(BR) and natural language inference~(NLI) tasks outperforms the previous state-of-the-art multilingual models by a large margin. We explore the same language bias of the learned representations, and propose a principle component based approach to remove the language identifying information from the representation while still retaining sentence semantics.Comment: preprint, updated licens

    A Comparative Study on Structural and Semantic Properties of Sentence Embeddings

    Full text link
    Sentence embeddings encode natural language sentences as low-dimensional dense vectors. A great deal of effort has been put into using sentence embeddings to improve several important natural language processing tasks. Relation extraction is such an NLP task that aims at identifying structured relations defined in a knowledge base from unstructured text. A promising and more efficient approach would be to embed both the text and structured knowledge in low-dimensional spaces and discover semantic alignments or mappings between them. Although a number of techniques have been proposed in the literature for embedding both sentences and knowledge graphs, little is known about the structural and semantic properties of these embedding spaces in terms of relation extraction. In this paper, we investigate the aforementioned properties by evaluating the extent to which sentences carrying similar senses are embedded in close proximity sub-spaces, and if we can exploit that structure to align sentences to a knowledge graph. We propose a set of experiments using a widely-used large-scale data set for relation extraction and focusing on a set of key sentence embedding methods. We additionally provide the code for reproducing these experiments at https://github.com/akalino/semantic-structural-sentences. These embedding methods cover a wide variety of techniques ranging from simple word embedding combination to transformer-based BERT-style model. Our experimental results show that different embedding spaces have different degrees of strength for the structural and semantic properties. These results provide useful information for developing embedding-based relation extraction methods.Comment: 10 pages, 3 figure

    SBERT-WK: A Sentence Embedding Method by Dissecting BERT-based Word Models

    Full text link
    Sentence embedding is an important research topic in natural language processing (NLP) since it can transfer knowledge to downstream tasks. Meanwhile, a contextualized word representation, called BERT, achieves the state-of-the-art performance in quite a few NLP tasks. Yet, it is an open problem to generate a high quality sentence representation from BERT-based word models. It was shown in previous study that different layers of BERT capture different linguistic properties. This allows us to fusion information across layers to find better sentence representation. In this work, we study the layer-wise pattern of the word representation of deep contextualized models. Then, we propose a new sentence embedding method by dissecting BERT-based word models through geometric analysis of the space spanned by the word representation. It is called the SBERT-WK method. No further training is required in SBERT-WK. We evaluate SBERT-WK on semantic textual similarity and downstream supervised tasks. Furthermore, ten sentence-level probing tasks are presented for detailed linguistic analysis. Experiments show that SBERT-WK achieves the state-of-the-art performance. Our codes are publicly available
    corecore