51,316 research outputs found

    Incrementally Learned Mixture Models for GNSS Localization

    Full text link
    GNSS localization is an important part of today's autonomous systems, although it suffers from non-Gaussian errors caused by non-line-of-sight effects. Recent methods are able to mitigate these effects by including the corresponding distributions in the sensor fusion algorithm. However, these approaches require prior knowledge about the sensor's distribution, which is often not available. We introduce a novel sensor fusion algorithm based on variational Bayesian inference, that is able to approximate the true distribution with a Gaussian mixture model and to learn its parametrization online. The proposed Incremental Variational Mixture algorithm automatically adapts the number of mixture components to the complexity of the measurement's error distribution. We compare the proposed algorithm against current state-of-the-art approaches using a collection of open access real world datasets and demonstrate its superior localization accuracy.Comment: 8 pages, 5 figures, published in proceedings of IEEE Intelligent Vehicles Symposium (IV) 201

    Underdetermined-order recursive least-squares adaptive filtering: The concept and algorithms

    No full text
    Published versio

    Multi-hop Diffusion LMS for Energy-constrained Distributed Estimation

    Full text link
    We propose a multi-hop diffusion strategy for a sensor network to perform distributed least mean-squares (LMS) estimation under local and network-wide energy constraints. At each iteration of the strategy, each node can combine intermediate parameter estimates from nodes other than its physical neighbors via a multi-hop relay path. We propose a rule to select combination weights for the multi-hop neighbors, which can balance between the transient and the steady-state network mean-square deviations (MSDs). We study two classes of networks: simple networks with a unique transmission path from one node to another, and arbitrary networks utilizing diffusion consultations over at most two hops. We propose a method to optimize each node's information neighborhood subject to local energy budgets and a network-wide energy budget for each diffusion iteration. This optimization requires the network topology, and the noise and data variance profiles of each node, and is performed offline before the diffusion process. In addition, we develop a fully distributed and adaptive algorithm that approximately optimizes the information neighborhood of each node with only local energy budget constraints in the case where diffusion consultations are performed over at most a predefined number of hops. Numerical results suggest that our proposed multi-hop diffusion strategy achieves the same steady-state MSD as the existing one-hop adapt-then-combine diffusion algorithm but with a lower energy budget.Comment: 14 pages, 12 figures. Submitted for publicatio

    Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study

    Full text link
    While first-order optimization methods such as stochastic gradient descent (SGD) are popular in machine learning (ML), they come with well-known deficiencies, including relatively-slow convergence, sensitivity to the settings of hyper-parameters such as learning rate, stagnation at high training errors, and difficulty in escaping flat regions and saddle points. These issues are particularly acute in highly non-convex settings such as those arising in neural networks. Motivated by this, there has been recent interest in second-order methods that aim to alleviate these shortcomings by capturing curvature information. In this paper, we report detailed empirical evaluations of a class of Newton-type methods, namely sub-sampled variants of trust region (TR) and adaptive regularization with cubics (ARC) algorithms, for non-convex ML problems. In doing so, we demonstrate that these methods not only can be computationally competitive with hand-tuned SGD with momentum, obtaining comparable or better generalization performance, but also they are highly robust to hyper-parameter settings. Further, in contrast to SGD with momentum, we show that the manner in which these Newton-type methods employ curvature information allows them to seamlessly escape flat regions and saddle points.Comment: 21 pages, 11 figures. Restructure the paper and add experiment
    corecore