28 research outputs found

    Analysis of Multicore CPU and GPU toward Parallelization of Total Focusing Method ultrasound reconstruction

    Get PDF
    International audienceUltrasonic imaging and reconstruction tools are commonly used to detect, identify and measure defects in different mechanical parts. Due to the complexity of the underlying physics, and due to the ever growing quantity of acquired data, computation time is becoming a limitation to the optimal inspection of a mechanical part. This article presents the performances of several implementations of a computational heavy algorithm, named Total Focusing Method, on both Graphics Processing Units (GPU) and General Purpose Processors (GPP). The scope of this study is narrowed to planar parts tested in immersion for defects. Using algorithmic simplifications and architectural optimizations, the algorithm has been drastically accelerated resulting in memory-bound implementations. On GPU, high performances can be achieved by profiting from GPU long memory transactions and from hand managed memory. Whereas on GPP, computations cost are overrun by memory access resulting in less efficient performances compared to the computing capabilities available. The following study constitutes the first step toward analyzing the target algorithm for diverse hardware in the non-destructive testing environment

    Parallelization and improvement of beamforming process in synthetic aperture systems for real-time ultrasonic image generation

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 9-02-2016La ecografía es hoy en día uno de los métodos de visualización más populares para examinar el interior de cuerpos opacos. Su aplicación es especialmente significativa tanto en el campo del diagnóstico médico como en las aplicaciones de evaluación no destructiva en el ámbito industrial, donde se evalúa la integridad de un componente o una estructura. El desarrollo de sistemas ecográficos de alta calidad y con buenas prestaciones se basa en el empleo de sistemas multisensoriales conocidos como arrays que pueden estar compuestos por varias decenas de elementos. El desarrollo de estos dispositivos tiene asociada una elevada complejidad, tanto por el número de sensores y la electrónica necesaria para la adquisición paralela de señales, como por la etapa de procesamiento de los datos adquiridos que debe operar en tiempo real. Esta etapa de procesamiento de señal trabaja con un elevado flujo de datos en paralelo y desarrolla, además de la composición de imagen, otras sofisticadas técnicas de medidas sobre los datos (medida de elasticidad, flujo, etc). En este sentido, el desarrollo de nuevos sistemas de imagen con mayores prestaciones (resolución, rango dinámico, imagen 3D, etc) está fuertemente limitado por el número de canales en la apertura del array. Mientras algunos estudios se han centrado en la reducción activa de sensores (sparse arrays como ejemplo), otros se han centrado en analizar diferentes estrategias de adquisiciónn que, operando con un número reducido de canales electrónicos en paralelo, sean capaz por multiplexación emular el funcionamiento de una apertura plena. A estas últimas técnicas se las agrupa mediante el concepto de Técnicas de Apertura Sintética (SAFT). Su interés radica en que no solo son capaces de reducir los requerimientos hardware del sistema (bajo consumo, portabilidad, coste, etc) sino que además permiten dentro de cierto compromiso la mejora de la calidad de imagen respecto a los sistemas convencionales...Ultrasound is nowadays one of the most popular visualization methods to examine the interior of opaque objects. Its application is particularly significant in the field of medical diagnosis as well as non-destructive evaluation applications in industry. The development of high performance ultrasound imaging systems is based on the use of multisensory systems known as arrays, which may be composed by dozens of elements. The development of these devices has associated a high complexity, due to the number of sensors and electronics needed for the parallel acquisition of signals, and for the processing stage of the acquired data which must operate on real-time. This signal processing stage works with a high data flow in parallel and develops, besides the image composition, other sophisticated measure techniques (measure of elasticity, flow, etc). In this sense, the development of new imaging systems with higher performance (resolution, dynamic range, 3D imaging, etc) is strongly limited by the number of channels in array’s aperture. While some studies have been focused on the reduction of active sensors (i.e. sparse arrays), others have been centered on analysing different acquisition strategies which, operating with reduced number of electronic channels in parallel, are able to emulate by multiplexing the behavior of a full aperture. These latest techniques are grouped under the term known as Synthetic Aperture Techniques (SAFT). Their interest is that they are able to reduce hardware requirements (low power, portability, cost, etc) and also allow to improve the image quality over conventional systems...Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Parallel computing 2011, ParCo 2011: book of abstracts

    Get PDF
    This book contains the abstracts of the presentations at the conference Parallel Computing 2011, 30 August - 2 September 2011, Ghent, Belgiu

    Rapid online reconstruction of non-Cartesian magnetic resonance images using commodity graphics cards

    Get PDF
    In Magnetic Resonance Imaging, energy of electromagnetic waves is used to excite protons placed in a static magnetic field. This generates a signal, which is further spatially encoded with linear magnetic field gradients. The signal exists in frequency domain called k-space. Traditionally, the signal is sampled in lines stored on a Cartesian grid. Next, Fast Fourier Transform is applied to generate images. However, the consecutive manner (line-by-line) of this strategy makes it very slow. Faster sampling strategies exist, but acquisitions with them require a more complex image reconstruction process. There is an obvious trade-off between acquisition time and complexity of image reconstruction. Real-time assessment protocols for day-to-day clinical work demand both data acquisition with rapid sampling trajectories and fast, robust image reconstructions. Computational solutions in form of parallel architectures can be used to aid image reconstruction, which has been proven to significantly speed-up reconstruction process. Regrettably, this is often done in off-line mode, where the data need to be downloaded from the scanner and reconstructed elsewhere. This process hinders the clinical workflow substantially. This work describes challenges entailed with translation of advanced imaging protocols into the clinical environment; (i) use of the advanced sequences is limited by their reconstruction time, and (ii) fast implementations exist but they still run in off-line mode. These were addressed and resolved with development of a novel online, heterogeneous image reconstruction system for Magnetic Resonance Imaging. The external platform was designed to support fast implementation of advanced reconstruction algorithms. An external computer equipped with a Graphic Processing Unit card was integrated into the scanner’s image reconstruction pipeline. This allowed direct access to high performance parallel hardware on which the rapid data reconstruction can be realised. Also, the automation of data transmission and reconstruction execution has preserved the non-interrupted assessment workflow

    Autoenfoque en imagen ultrasónica

    Get PDF
    La inspección de componentes por ultrasonidos se realiza, actualmente, con sistemas de imagen phased array, versión industrial de los ecógrafos médicos. En ambos casos se utiliza un array con decenas o centenares de pequeños transductores piezoeléctricos que se controlan individualmente para enfocar y deflectar el haz ultrasónico en emisión y recepción. Pero, mientras que en medicina el array está en contacto con el cuerpo, que es flexible, en la industria se suele interponer un medio acoplante entre el array y el componente a inspeccionar. Cuando la geometría de la pieza no es plana se utiliza agua como medio acoplante, que se adapta a la forma de la pieza y proporciona un medio continuo y de baja atenuación para la transmisión del sonido. En estas condiciones existen dos medios de propagación, lo que dificulta la determinación de los retardos de enfoque por efectos de la refracción. Como en estas condiciones no existen fórmulas cerradas que faciliten su cálculo, hasta la fecha se han venido utilizando procesos iterativos computacionalmente costosos que impiden la modificación rápida del enfoque cuando varía la geometría de la pieza (por ejemplo, durante la realización de un barrido). Estas razones han impedido el desarrollo de técnicas de autoenfoque efectivas. Esta Tesis aporta tres técnicas que, junto al cálculo en tiempo real de los parámetros de enfoque y un soporte arquitectural de imagen a ultra-alta velocidad, están entre las primeras aproximaciones reales para solucionar el problema del autoenfoque en imagen ultrasónica. De hecho, una de ellas (AUTOFOCUS) ha sido patentada y transferida a la industria, que la comercializa en equipos phased array con esta capacidad. La memoria describe las motivaciones, fundamentos, aproximaciones conocidas al problema así como las dificultades y las soluciones investigadas. Una segunda parte incluye las publicaciones más relevantes donde se han comunicado los resultados, contrastando los teóricamente esperados con los experimentalmente obtenidos

    Microwave Sensing and Imaging

    Get PDF
    In recent years, microwave sensing and imaging have acquired an ever-growing importance in several applicative fields, such as non-destructive evaluations in industry and civil engineering, subsurface prospection, security, and biomedical imaging. Indeed, microwave techniques allow, in principle, for information to be obtained directly regarding the physical parameters of the inspected targets (dielectric properties, shape, etc.) by using safe electromagnetic radiations and cost-effective systems. Consequently, a great deal of research activity has recently been devoted to the development of efficient/reliable measurement systems, which are effective data processing algorithms that can be used to solve the underlying electromagnetic inverse scattering problem, and efficient forward solvers to model electromagnetic interactions. Within this framework, this Special Issue aims to provide some insights into recent microwave sensing and imaging systems and techniques

    Machine Learning Methods and Computationally Efficient Techniques in Digital Rock Analysis

    Full text link
    Digital Rock Analysis involves (1) 3D X-ray CT imaging and processing, (2) identifying and segmenting the minerals, and (3) performing flow simulation to obtain upscalable petrophysical parameters. Limitations exist at each step, primarily: (1) the resolution and Field of View (FOV), (2) bias and accuracy of identification and segmentation, and (3) the accuracy and computational intensity of direct simulation. These limitations are surpassed with machine learning and efficient simulation techniques. Super Resolution Convolutional Neural Networks (SRCNNs) and Enhanced Deep Generative Adversarial Networks (EDSRGANs) are shown in 2D and 3D to compensate for resolution-FOV limitations. SRCNNs boost resolution and recover edge sharpness, while EDSRGANs also recover texture. The noise reduction of SRCNNs precondition for image segmentation. Physical accuracy measured by phase topology and permeability achieves the closest match with EDSRGAN. Generalisation with augmentation shows high adaptability to noise and blur. Regenerated under-resolution features and comparison with SEM images shows consistency with underlying geometry. A custom formulated Deep CNN, U-ResNet and other networks are trained to perform 3D multi-mineral segmentation to eliminate user-bias, manual tuning, and algorithmic limitations inherent in traditional methods. U-ResNet performs most accurately and reliably, achieving the highest voxelwise accuracy and most consistent physical accuracy measured by calculating the topology of segmented mineral phases and comparing single and multi-phase direct flow simulations. Several techniques are proposed for efficient single and multi-phase flow at steady-state conditions. Single-phase flow in large images can be estimated using a Dual Grid Domain Decomposition (DGDD) that significantly reduces memory computational requirements, allowing workstations to solve supercomputer size problems. Multi-phase flow can be accelerated with a Morphologically Coupled Multi-phase Lattice Boltzmann Method (MorphLBM), rapidly computing capillary dominated flows, typically 5x faster using a Shell Aggregation morphing method. A U-net CNN can also rapidly estimate steady-state velocity fields, used as-is or as preconditioner in direct LBM simulation (ML-LBM). Similarly, the same acceleration procedure can also be coupled to Pore Network Models and Semi-Analytical Solvers to form accelerated direct simulation techniques. At each step of the Digital Rock workflow, machine learning methods and efficient techniques enhance results past physical limits and/or boost performance of traditional techniques

    The Customizable Virtual FPGA: Generation, System Integration and Configuration of Application-Specific Heterogeneous FPGA Architectures

    Get PDF
    In den vergangenen drei Jahrzehnten wurde die Entwicklung von Field Programmable Gate Arrays (FPGAs) stark von Moore’s Gesetz, Prozesstechnologie (Skalierung) und kommerziellen Märkten beeinflusst. State-of-the-Art FPGAs bewegen sich einerseits dem Allzweck näher, aber andererseits, da FPGAs immer mehr traditionelle Domänen der Anwendungsspezifischen integrierten Schaltungen (ASICs) ersetzt haben, steigen die Effizienzerwartungen. Mit dem Ende der Dennard-Skalierung können Effizienzsteigerungen nicht mehr auf Technologie-Skalierung allein zurückgreifen. Diese Facetten und Trends in Richtung rekonfigurierbarer System-on-Chips (SoCs) und neuen Low-Power-Anwendungen wie Cyber Physical Systems und Internet of Things erfordern eine bessere Anpassung der Ziel-FPGAs. Neben den Trends für den Mainstream-Einsatz von FPGAs in Produkten des täglichen Bedarfs und Services wird es vor allem bei den jüngsten Entwicklungen, FPGAs in Rechenzentren und Cloud-Services einzusetzen, notwendig sein, eine sofortige Portabilität von Applikationen über aktuelle und zukünftige FPGA-Geräte hinweg zu gewährleisten. In diesem Zusammenhang kann die Hardware-Virtualisierung ein nahtloses Mittel für Plattformunabhängigkeit und Portabilität sein. Ehrlich gesagt stehen die Zwecke der Anpassung und der Virtualisierung eigentlich in einem Konfliktfeld, da die Anpassung für die Effizienzsteigerung vorgesehen ist, während jedoch die Virtualisierung zusätzlichen Flächenaufwand hinzufügt. Die Virtualisierung profitiert aber nicht nur von der Anpassung, sondern fügt auch mehr Flexibilität hinzu, da die Architektur jederzeit verändert werden kann. Diese Besonderheit kann für adaptive Systeme ausgenutzt werden. Sowohl die Anpassung als auch die Virtualisierung von FPGA-Architekturen wurden in der Industrie bisher kaum adressiert. Trotz einiger existierenden akademischen Werke können diese Techniken noch als unerforscht betrachtet werden und sind aufstrebende Forschungsgebiete. Das Hauptziel dieser Arbeit ist die Generierung von FPGA-Architekturen, die auf eine effiziente Anpassung an die Applikation zugeschnitten sind. Im Gegensatz zum üblichen Ansatz mit kommerziellen FPGAs, bei denen die FPGA-Architektur als gegeben betrachtet wird und die Applikation auf die vorhandenen Ressourcen abgebildet wird, folgt diese Arbeit einem neuen Paradigma, in dem die Applikation oder Applikationsklasse fest steht und die Zielarchitektur auf die effiziente Anpassung an die Applikation zugeschnitten ist. Dies resultiert in angepassten anwendungsspezifischen FPGAs. Die drei Säulen dieser Arbeit sind die Aspekte der Virtualisierung, der Anpassung und des Frameworks. Das zentrale Element ist eine weitgehend parametrierbare virtuelle FPGA-Architektur, die V-FPGA genannt wird, wobei sie als primäres Ziel auf jeden kommerziellen FPGA abgebildet werden kann, während Anwendungen auf der virtuellen Schicht ausgeführt werden. Dies sorgt für Portabilität und Migration auch auf Bitstream-Ebene, da die Spezifikation der virtuellen Schicht bestehen bleibt, während die physische Plattform ausgetauscht werden kann. Darüber hinaus wird diese Technik genutzt, um eine dynamische und partielle Rekonfiguration auf Plattformen zu ermöglichen, die sie nicht nativ unterstützen. Neben der Virtualisierung soll die V-FPGA-Architektur auch als eingebettetes FPGA in ein ASIC integriert werden, das effiziente und dennoch flexible System-on-Chip-Lösungen bietet. Daher werden Zieltechnologie-Abbildungs-Methoden sowohl für Virtualisierung als auch für die physikalische Umsetzung adressiert und ein Beispiel für die physikalische Umsetzung in einem 45 nm Standardzellen Ansatz aufgezeigt. Die hochflexible V-FPGA-Architektur kann mit mehr als 20 Parametern angepasst werden, darunter LUT-Grösse, Clustering, 3D-Stacking, Routing-Struktur und vieles mehr. Die Auswirkungen der Parameter auf Fläche und Leistung der Architektur werden untersucht und eine umfangreiche Analyse von über 1400 Benchmarkläufen zeigt eine hohe Parameterempfindlichkeit bei Abweichungen bis zu ±95, 9% in der Fläche und ±78, 1% in der Leistung, was die hohe Bedeutung von Anpassung für Effizienz aufzeigt. Um die Parameter systematisch an die Bedürfnisse der Applikation anzupassen, wird eine parametrische Entwurfsraum-Explorationsmethode auf der Basis geeigneter Flächen- und Zeitmodellen vorgeschlagen. Eine Herausforderung von angepassten Architekturen ist der Entwurfsaufwand und die Notwendigkeit für angepasste Werkzeuge. Daher umfasst diese Arbeit ein Framework für die Architekturgenerierung, die Entwurfsraumexploration, die Anwendungsabbildung und die Evaluation. Vor allem ist der V-FPGA in einem vollständig synthetisierbaren generischen Very High Speed Integrated Circuit Hardware Description Language (VHDL) Code konzipiert, der sehr flexibel ist und die Notwendigkeit für externe Codegeneratoren eliminiert. Systementwickler können von verschiedenen Arten von generischen SoC-Architekturvorlagen profitieren, um die Entwicklungszeit zu reduzieren. Alle notwendigen Konstruktionsschritte für die Applikationsentwicklung und -abbildung auf den V-FPGA werden durch einen Tool-Flow für Entwurfsautomatisierung unterstützt, der eine Sammlung von vorhandenen kommerziellen und akademischen Werkzeugen ausnutzt, die durch geeignete Modelle angepasst und durch ein neues Werkzeug namens V-FPGA-Explorer ergänzt werden. Dieses neue Tool fungiert nicht nur als Back-End-Tool für die Anwendungsabbildung auf dem V-FPGA sondern ist auch ein grafischer Konfigurations- und Layout-Editor, ein Bitstream-Generator, ein Architekturdatei-Generator für die Place & Route Tools, ein Script-Generator und ein Testbenchgenerator. Eine Besonderheit ist die Unterstützung der Just-in-Time-Kompilierung mit schnellen Algorithmen für die In-System Anwendungsabbildung. Die Arbeit schliesst mit einigen Anwendungsfällen aus den Bereichen industrielle Prozessautomatisierung, medizinische Bildgebung, adaptive Systeme und Lehre ab, in denen der V-FPGA eingesetzt wird
    corecore