29 research outputs found

    Inferring energy-composition relationships with Bayesian optimization enhances exploration of inorganic materials

    Full text link
    Computational exploration of the compositional spaces of materials can provide guidance for synthetic research and thus accelerate the discovery of novel materials. Most approaches employ high-throughput sampling and focus on reducing the time for energy evaluation for individual compositions, often at the cost of accuracy. Here, we present an alternative approach focusing on effective sampling of the compositional space. The learning algorithm PhaseBO optimizes the stoichiometry of the potential target material while improving the probability of and accelerating its discovery without compromising the accuracy of energy evaluation

    GUTS: Generalized Uncertainty-Aware Thompson Sampling for Multi-Agent Active Search

    Full text link
    Robotic solutions for quick disaster response are essential to ensure minimal loss of life, especially when the search area is too dangerous or too vast for human rescuers. We model this problem as an asynchronous multi-agent active-search task where each robot aims to efficiently seek objects of interest (OOIs) in an unknown environment. This formulation addresses the requirement that search missions should focus on quick recovery of OOIs rather than full coverage of the search region. Previous approaches fail to accurately model sensing uncertainty, account for occlusions due to foliage or terrain, or consider the requirement for heterogeneous search teams and robustness to hardware and communication failures. We present the Generalized Uncertainty-aware Thompson Sampling (GUTS) algorithm, which addresses these issues and is suitable for deployment on heterogeneous multi-robot systems for active search in large unstructured environments. We show through simulation experiments that GUTS consistently outperforms existing methods such as parallelized Thompson Sampling and exhaustive search, recovering all OOIs in 80% of all runs. In contrast, existing approaches recover all OOIs in less than 40% of all runs. We conduct field tests using our multi-robot system in an unstructured environment with a search area of approximately 75,000 sq. m. Our system demonstrates robustness to various failure modes, achieving full recovery of OOIs (where feasible) in every field run, and significantly outperforming our baseline.Comment: 7 pages, 5 figures, 1 table, for associated video see: https://youtu.be/K0jkzdQ_j2E , to appear in International Conference on Robotics and Automation (ICRA) 202

    Output-Weighted Sampling for Multi-Armed Bandits with Extreme Payoffs

    Full text link
    We present a new type of acquisition functions for online decision making in multi-armed and contextual bandit problems with extreme payoffs. Specifically, we model the payoff function as a Gaussian process and formulate a novel type of upper confidence bound (UCB) acquisition function that guides exploration towards the bandits that are deemed most relevant according to the variability of the observed rewards. This is achieved by computing a tractable likelihood ratio that quantifies the importance of the output relative to the inputs and essentially acts as an \textit{attention mechanism} that promotes exploration of extreme rewards. We demonstrate the benefits of the proposed methodology across several synthetic benchmarks, as well as a realistic example involving noisy sensor network data. Finally, we provide a JAX library for efficient bandit optimization using Gaussian processes.Comment: 10 pages, 4 figures, 1 tabl

    Fast Charging of Lithium-Ion Batteries Using Deep Bayesian Optimization with Recurrent Neural Network

    Full text link
    Fast charging has attracted increasing attention from the battery community for electrical vehicles (EVs) to alleviate range anxiety and reduce charging time for EVs. However, inappropriate charging strategies would cause severe degradation of batteries or even hazardous accidents. To optimize fast-charging strategies under various constraints, particularly safety limits, we propose a novel deep Bayesian optimization (BO) approach that utilizes Bayesian recurrent neural network (BRNN) as the surrogate model, given its capability in handling sequential data. In addition, a combined acquisition function of expected improvement (EI) and upper confidence bound (UCB) is developed to better balance the exploitation and exploration. The effectiveness of the proposed approach is demonstrated on the PETLION, a porous electrode theory-based battery simulator. Our method is also compared with the state-of-the-art BO methods that use Gaussian process (GP) and non-recurrent network as surrogate models. The results verify the superior performance of the proposed fast charging approaches, which mainly results from that: (i) the BRNN-based surrogate model provides a more precise prediction of battery lifetime than that based on GP or non-recurrent network; and (ii) the combined acquisition function outperforms traditional EI or UCB criteria in exploring the optimal charging protocol that maintains the longest battery lifetime

    Regret Bounds for Noise-Free Bayesian Optimization

    Full text link
    Bayesian optimisation is a powerful method for non-convex black-box optimization in low data regimes. However, the question of establishing tight upper bounds for common algorithms in the noiseless setting remains a largely open question. In this paper, we establish new and tightest bounds for two algorithms, namely GP-UCB and Thompson sampling, under the assumption that the objective function is smooth in terms of having a bounded norm in a Mat\'ern RKHS. Importantly, unlike several related works, we do not consider perfect knowledge of the kernel of the Gaussian process emulator used within the Bayesian optimization loop. This allows us to provide results for practical algorithms that sequentially estimate the Gaussian process kernel parameters from the available data
    corecore