8,083 research outputs found

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Exact Solution Methods for the kk-item Quadratic Knapsack Problem

    Full text link
    The purpose of this paper is to solve the 0-1 kk-item quadratic knapsack problem (kQKP)(kQKP), a problem of maximizing a quadratic function subject to two linear constraints. We propose an exact method based on semidefinite optimization. The semidefinite relaxation used in our approach includes simple rank one constraints, which can be handled efficiently by interior point methods. Furthermore, we strengthen the relaxation by polyhedral constraints and obtain approximate solutions to this semidefinite problem by applying a bundle method. We review other exact solution methods and compare all these approaches by experimenting with instances of various sizes and densities.Comment: 12 page

    Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

    Full text link
    Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major computational challenge to today's power industry for the real-time operation of large-scale power grids. In this paper, we propose a new technique for reformulation of the rank constraints using both principal and non-principal 2-by-2 minors of the involved Hermitian matrix variable and characterize all such minors into three types. We show the equivalence of these minor constraints to the physical constraints of voltage angle differences summing to zero over three- and four-cycles in the power network. We study second-order conic programming (SOCP) relaxations of this minor reformulation and propose strong cutting planes, convex envelopes, and bound tightening techniques to strengthen the resulting SOCP relaxations. We then propose an SOCP-based spatial branch-and-cut method to obtain the global optimum of AC OPF. Extensive computational experiments show that the proposed algorithm significantly outperforms the state-of-the-art SDP-based OPF solver and on a simple personal computer is able to obtain on average a 0.71% optimality gap in no more than 720 seconds for the most challenging power system instances in the literature
    corecore