2,874 research outputs found

    Architecture independent parallel selection with applications to parallel priority queues

    Get PDF
    AbstractWe present a randomized selection algorithm whose performance is analyzed in an architecture independent way on the bulk-synchronous parallel (BSP) model of computation along with an application of this algorithm to dynamic data structures, namely parallel priority queues. We show that our algorithms improve previous results upon both the communication requirements and the amount of parallel slack required to achieve optimal performance. We also establish that optimality to within small multiplicative constant factors can be achieved for a wide range of parallel machines. While these algorithms are fairly simple themselves, descriptions of their performance in terms of the BSP parameters is somewhat involved; the main reward of quantifying these complications is that it allows transportable software to be written for parallel machines that fit the model

    Distributed Machine Learning via Sufficient Factor Broadcasting

    Full text link
    Matrix-parametrized models, including multiclass logistic regression and sparse coding, are used in machine learning (ML) applications ranging from computer vision to computational biology. When these models are applied to large-scale ML problems starting at millions of samples and tens of thousands of classes, their parameter matrix can grow at an unexpected rate, resulting in high parameter synchronization costs that greatly slow down distributed learning. To address this issue, we propose a Sufficient Factor Broadcasting (SFB) computation model for efficient distributed learning of a large family of matrix-parameterized models, which share the following property: the parameter update computed on each data sample is a rank-1 matrix, i.e., the outer product of two "sufficient factors" (SFs). By broadcasting the SFs among worker machines and reconstructing the update matrices locally at each worker, SFB improves communication efficiency --- communication costs are linear in the parameter matrix's dimensions, rather than quadratic --- without affecting computational correctness. We present a theoretical convergence analysis of SFB, and empirically corroborate its efficiency on four different matrix-parametrized ML models
    • …
    corecore