3 research outputs found

    Practical Precoding via Asynchronous Stochastic Successive Convex Approximation

    Full text link
    We consider stochastic optimization of a smooth non-convex loss function with a convex non-smooth regularizer. In the online setting, where a single sample of the stochastic gradient of the loss is available at every iteration, the problem can be solved using the proximal stochastic gradient descent (SGD) algorithm and its variants. However in many problems, especially those arising in communications and signal processing, information beyond the stochastic gradient may be available thanks to the structure of the loss function. Such extra-gradient information is not used by SGD, but has been shown to be useful, for instance in the context of stochastic expectation-maximization, stochastic majorization-minimization, and stochastic successive convex approximation (SCA) approaches. By constructing a stochastic strongly convex surrogates of the loss function at every iteration, the stochastic SCA algorithms can exploit the structural properties of the loss function and achieve superior empirical performance as compared to the SGD. In this work, we take a closer look at the stochastic SCA algorithm and develop its asynchronous variant which can be used for resource allocation in wireless networks. While the stochastic SCA algorithm is known to converge asymptotically, its iteration complexity has not been well-studied, and is the focus of the current work. The insights obtained from the non-asymptotic analysis allow us to develop a more practical asynchronous variant of the stochastic SCA algorithm which allows the use of surrogates calculated in earlier iterations. We characterize precise bound on the maximum delay the algorithm can tolerate, while still achieving the same convergence rate. We apply the algorithm to the problem of linear precoding in wireless sensor networks, where it can be implemented at low complexity but is shown to perform well in practice

    Distributed Inexact Successive Convex Approximation ADMM: Analysis-Part I

    Full text link
    In this two-part work, we propose an algorithmic framework for solving non-convex problems whose objective function is the sum of a number of smooth component functions plus a convex (possibly non-smooth) or/and smooth (possibly non-convex) regularization function. The proposed algorithm incorporates ideas from several existing approaches such as alternate direction method of multipliers (ADMM), successive convex approximation (SCA), distributed and asynchronous algorithms, and inexact gradient methods. Different from a number of existing approaches, however, the proposed framework is flexible enough to incorporate a class of non-convex objective functions, allow distributed operation with and without a fusion center, and include variance reduced methods as special cases. Remarkably, the proposed algorithms are robust to uncertainties arising from random, deterministic, and adversarial sources. The part I of the paper develops two variants of the algorithm under very mild assumptions and establishes first-order convergence rate guarantees. The proof developed here allows for generic errors and delays, paving the way for different variance-reduced, asynchronous, and stochastic implementations, outlined and evaluated in part II

    Conservative Stochastic Optimization with Expectation Constraints

    Full text link
    This paper considers stochastic convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables, in addition to deterministic convex constraints on the domain of the variables. Although the setting is generic and arises in different machine learning applications, online and efficient approaches for solving such problems have not been widely studied. Since the underlying data distribution is unknown a priori, a closed-form solution is generally not available, and classical deterministic optimization paradigms are not applicable. State-of-the-art approaches, such as those using the saddle point framework, can ensure that the optimality gap as well as the constraint violation decay as \O\left(T^{-\frac{1}{2}}\right) where TT is the number of stochastic gradients. The domain constraints are assumed simple and handled via projection at every iteration. In this work, we propose a novel conservative stochastic optimization algorithm (CSOA) that achieves zero constraint violation and \O\left(T^{-\frac{1}{2}}\right) optimality gap. Further, the projection operation (for scenarios when calculating projection is expensive) in the proposed algorithm can be avoided by considering the conditional gradient or Frank-Wolfe (FW) variant of the algorithm. The state-of-the-art stochastic FW variants achieve an optimality gap of \O\left(T^{-\frac{1}{3}}\right) after TT iterations, though these algorithms have not been applied to problems with functional expectation constraints. In this work, we propose the FW-CSOA algorithm that is not only projection-free but also achieves zero constraint violation with \O\left(T^{-\frac{1}{4}}\right) decay of the optimality gap. The efficacy of the proposed algorithms is tested on two relevant problems: fair classification and structured matrix completion
    corecore