64 research outputs found

    Temporal Learning and Sequence Modeling for a Job Recommender System

    Full text link
    We present our solution to the job recommendation task for RecSys Challenge 2016. The main contribution of our work is to combine temporal learning with sequence modeling to capture complex user-item activity patterns to improve job recommendations. First, we propose a time-based ranking model applied to historical observations and a hybrid matrix factorization over time re-weighted interactions. Second, we exploit sequence properties in user-items activities and develop a RNN-based recommendation model. Our solution achieved 5th^{th} place in the challenge among more than 100 participants. Notably, the strong performance of our RNN approach shows a promising new direction in employing sequence modeling for recommendation systems.Comment: a shorter version in proceedings of RecSys Challenge 201

    Multi-modal Embedding Fusion-based Recommender

    Full text link
    Recommendation systems have lately been popularized globally, with primary use cases in online interaction systems, with significant focus on e-commerce platforms. We have developed a machine learning-based recommendation platform, which can be easily applied to almost any items and/or actions domain. Contrary to existing recommendation systems, our platform supports multiple types of interaction data with multiple modalities of metadata natively. This is achieved through multi-modal fusion of various data representations. We deployed the platform into multiple e-commerce stores of different kinds, e.g. food and beverages, shoes, fashion items, telecom operators. Here, we present our system, its flexibility and performance. We also show benchmark results on open datasets, that significantly outperform state-of-the-art prior work.Comment: 7 pages, 8 figure

    Contextual Sequence Modeling for Recommendation with Recurrent Neural Networks

    Full text link
    Recommendations can greatly benefit from good representations of the user state at recommendation time. Recent approaches that leverage Recurrent Neural Networks (RNNs) for session-based recommendations have shown that Deep Learning models can provide useful user representations for recommendation. However, current RNN modeling approaches summarize the user state by only taking into account the sequence of items that the user has interacted with in the past, without taking into account other essential types of context information such as the associated types of user-item interactions, the time gaps between events and the time of day for each interaction. To address this, we propose a new class of Contextual Recurrent Neural Networks for Recommendation (CRNNs) that can take into account the contextual information both in the input and output layers and modifying the behavior of the RNN by combining the context embedding with the item embedding and more explicitly, in the model dynamics, by parametrizing the hidden unit transitions as a function of context information. We compare our CRNNs approach with RNNs and non-sequential baselines and show good improvements on the next event prediction task
    • …
    corecore