21,280 research outputs found

    Good Random Matrices over Finite Fields

    Full text link
    The random matrix uniformly distributed over the set of all m-by-n matrices over a finite field plays an important role in many branches of information theory. In this paper a generalization of this random matrix, called k-good random matrices, is studied. It is shown that a k-good random m-by-n matrix with a distribution of minimum support size is uniformly distributed over a maximum-rank-distance (MRD) code of minimum rank distance min{m,n}-k+1, and vice versa. Further examples of k-good random matrices are derived from homogeneous weights on matrix modules. Several applications of k-good random matrices are given, establishing links with some well-known combinatorial problems. Finally, the related combinatorial concept of a k-dense set of m-by-n matrices is studied, identifying such sets as blocking sets with respect to (m-k)-dimensional flats in a certain m-by-n matrix geometry and determining their minimum size in special cases.Comment: 25 pages, publishe

    Asymptotically optimal cooperative wireless networks with reduced signaling complexity

    Get PDF
    This paper considers an orthogonal amplify-and-forward (OAF) protocol for cooperative relay communication over Rayleigh-fading channels in which the intermediate relays are permitted to linearly transform the received signal and where the source and relays transmit for equal time durations. The diversity-multiplexing gain (D-MG) tradeoff of the equivalent space-time channel associated to this protocol is determined and a cyclic-division-algebra-based D-MG optimal code constructed. The transmission or signaling alphabet of this code is the union of the QAM constellation and a rotated version of QAM. The size of this signaling alphabet is small in comparison with prior D-MG optimal constructions in the literature and is independent of the number of participating nodes in the network

    Second-Order Weight Distributions

    Full text link
    A fundamental property of codes, the second-order weight distribution, is proposed to solve the problems such as computing second moments of weight distributions of linear code ensembles. A series of results, parallel to those for weight distributions, is established for second-order weight distributions. In particular, an analogue of MacWilliams identities is proved. The second-order weight distributions of regular LDPC code ensembles are then computed. As easy consequences, the second moments of weight distributions of regular LDPC code ensembles are obtained. Furthermore, the application of second-order weight distributions in random coding approach is discussed. The second-order weight distributions of the ensembles generated by a so-called 2-good random generator or parity-check matrix are computed, where a 2-good random matrix is a kind of generalization of the uniformly distributed random matrix over a finite filed and is very useful for solving problems that involve pairwise or triple-wise properties of sequences. It is shown that the 2-good property is reflected in the second-order weight distribution, which thus plays a fundamental role in some well-known problems in coding theory and combinatorics. An example of linear intersecting codes is finally provided to illustrate this fact.Comment: 10 pages, accepted for publication in IEEE Transactions on Information Theory, May 201

    Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction

    Full text link
    A simple scheme for communication over MIMO broadcast channels is introduced which adopts the lattice reduction technique to improve the naive channel inversion method. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. Simulation results show that the proposed scheme performs well, and as compared to the more complex methods (such as the perturbation method) has a negligible loss. Moreover, the proposed method is extended to the case of different rates for different users. The asymptotic behavior of the symbol error rate of the proposed method and the perturbation technique, and also the outage probability for the case of fixed-rate users is analyzed. It is shown that the proposed method, based on LLL lattice reduction, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). Also, the outage probability for the case of fixed sum-rate is analyzed.Comment: Submitted to IEEE Trans. on Info. Theory (Jan. 15, 2006), Revised (Jun. 12, 2007

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed

    Area spectral efficiency of soft-decision space–time–frequency shift-keying-aided slow-frequency-hopping multiple access

    No full text
    Slow-frequency-hopping multiple access (SFHMA) can provide inherent frequency diversity and beneficially randomize the effects of cochannel interference. It may also be advantageously combined with our novel space-time–frequency shift keying (STFSK) scheme. The proposed system’s area spectral efficiency is investigated in various cellular frequency reuse structures. Furthermore, it is compared to both classic Gaussian minimum shift keying (GMSK)-aided SFHMA and GMSK-assisted time- division/frequency-division multiple access (TD/FDMA). The more sophisticated third-generation wideband code-division multiple access (WCDMA) and the fourth-generation Long Term Evolution (LTE) systems were also included in our comparisons. We demonstrate that the area spectral efficiency of the STFSK-aided SFHMA system is higher than the GMSK-aided SFHMA and TD/FDMA systems, as well as WCDMA, but it is only 60% of the LTE system

    A Hybrid Decomposition Parallel Implementation of the Car-Parrinello Method

    Full text link
    We have developed a flexible hybrid decomposition parallel implementation of the first-principles molecular dynamics algorithm of Car and Parrinello. The code allows the problem to be decomposed either spatially, over the electronic orbitals, or any combination of the two. Performance statistics for 32, 64, 128 and 512 Si atom runs on the Touchstone Delta and Intel Paragon parallel supercomputers and comparison with the performance of an optimized code running the smaller systems on the Cray Y-MP and C90 are presented.Comment: Accepted by Computer Physics Communications, latex, 34 pages without figures, 15 figures available in PostScript form via WWW at http://www-theory.chem.washington.edu/~wiggs/hyb_figures.htm
    corecore