5,569 research outputs found

    Real-Time Implementation and Performance Optimization of Local Derivative Pattern Algorithm on GPUs

    Get PDF
    Pattern based texture descriptors are widely used in Content Based Image Retrieval (CBIR) for efficient retrieval of matching images. Local Derivative Pattern (LDP), a higher order local pattern operator, originally proposed for face recognition, encodes the distinctive spatial relationships contained in a local region of an image as the feature vector. LDP efficiently extracts finer details and provides efficient retrieval however, it was proposed for images of limited resolution. Over the period of time the development in the digital image sensors had paid way for capturing images at a very high resolution. LDP algorithm though very efficient in content-based image retrieval did not scale well when capturing features from such high-resolution images as it becomes computationally very expensive. This paper proposes how to efficiently extract parallelism from the LDP algorithm and strategies for optimally implementing it by exploiting some inherent General-Purpose Graphics Processing Unit (GPGPU) characteristics. By optimally configuring the GPGPU kernels, image retrieval was performed at a much faster rate. The LDP algorithm was ported on to Compute Unified Device Architecture (CUDA) supported GPGPU and a maximum speed up of around 240x was achieved as compared to its sequential counterpart

    The Parallel Distributed Image Search Engine (ParaDISE)

    Get PDF
    Image retrieval is a complex task that differs according to the context and the user requirements in any specific field, for example in a medical environment. Search by text is often not possible or optimal and retrieval by the visual content does not always succeed in modelling high-level concepts that a user is looking for. Modern image retrieval techniques consists of multiple steps and aim to retrieve information from large–scale datasets and not only based on global image appearance but local features and if possible in a connection between visual features and text or semantics. This paper presents the Parallel Distributed Image Search Engine (ParaDISE), an image retrieval system that combines visual search with text–based retrieval and that is available as open source and free of charge. The main design concepts of ParaDISE are flexibility, expandability, scalability and interoperability. These concepts constitute the system, able to be used both in real–world applications and as an image retrieval research platform. Apart from the architecture and the implementation of the system, two use cases are described, an application of ParaDISE in retrieval of images from the medical literature and a visual feature evaluation for medical image retrieval. Future steps include the creation of an open source community that will contribute and expand this platform based on the existing parts

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio
    • …
    corecore