26 research outputs found

    Técnicas big data para el procesamiento de flujos de datos masivos en tiempo real

    Get PDF
    Programa de Doctorado en Biotecnología, Ingeniería y Tecnología QuímicaLínea de Investigación: Ingeniería, Ciencia de Datos y BioinformáticaClave Programa: DBICódigo Línea: 111Machine learning techniques have become one of the most demanded resources by companies due to the large volume of data that surrounds us in these days. The main objective of these technologies is to solve complex problems in an automated way using data. One of the current perspectives of machine learning is the analysis of continuous flows of data or data streaming. This approach is increasingly requested by enterprises as a result of the large number of information sources producing time-indexed data at high frequency, such as sensors, Internet of Things devices, social networks, etc. However, nowadays, research is more focused on the study of historical data than on data received in streaming. One of the main reasons for this is the enormous challenge that this type of data presents for the modeling of machine learning algorithms. This Doctoral Thesis is presented in the form of a compendium of publications with a total of 10 scientific contributions in International Conferences and journals with high impact index in the Journal Citation Reports (JCR). The research developed during the PhD Program focuses on the study and analysis of real-time or streaming data through the development of new machine learning algorithms. Machine learning algorithms for real-time data consist of a different type of modeling than the traditional one, where the model is updated online to provide accurate responses in the shortest possible time. The main objective of this Doctoral Thesis is the contribution of research value to the scientific community through three new machine learning algorithms. These algorithms are big data techniques and two of them work with online or streaming data. In this way, contributions are made to the development of one of the current trends in Artificial Intelligence. With this purpose, algorithms are developed for descriptive and predictive tasks, i.e., unsupervised and supervised learning, respectively. Their common idea is the discovery of patterns in the data. The first technique developed during the dissertation is a triclustering algorithm to produce three-dimensional data clusters in offline or batch mode. This big data algorithm is called bigTriGen. In a general way, an evolutionary metaheuristic is used to search for groups of data with similar patterns. The model uses genetic operators such as selection, crossover, mutation or evaluation operators at each iteration. The goal of the bigTriGen is to optimize the evaluation function to achieve triclusters of the highest possible quality. It is used as the basis for the second technique implemented during the Doctoral Thesis. The second algorithm focuses on the creation of groups over three-dimensional data received in real-time or in streaming. It is called STriGen. Streaming modeling is carried out starting from an offline or batch model using historical data. As soon as this model is created, it starts receiving data in real-time. The model is updated in an online or streaming manner to adapt to new streaming patterns. In this way, the STriGen is able to detect concept drifts and incorporate them into the model as quickly as possible, thus producing triclusters in real-time and of good quality. The last algorithm developed in this dissertation follows a supervised learning approach for time series forecasting in real-time. It is called StreamWNN. A model is created with historical data based on the k-nearest neighbor or KNN algorithm. Once the model is created, data starts to be received in real-time. The algorithm provides real-time predictions of future data, keeping the model always updated in an incremental way and incorporating streaming patterns identified as novelties. The StreamWNN also identifies anomalous data in real-time allowing this feature to be used as a security measure during its application. The developed algorithms have been evaluated with real data from devices and sensors. These new techniques have demonstrated to be very useful, providing meaningful triclusters and accurate predictions in real time.Universidad Pablo de Olavide de Sevilla. Departamento de Deporte e informátic

    Aco-based feature selection algorithm for classification

    Get PDF
    Dataset with a small number of records but big number of attributes represents a phenomenon called “curse of dimensionality”. The classification of this type of dataset requires Feature Selection (FS) methods for the extraction of useful information. The modified graph clustering ant colony optimisation (MGCACO) algorithm is an effective FS method that was developed based on grouping the highly correlated features. However, the MGCACO algorithm has three main drawbacks in producing a features subset because of its clustering method, parameter sensitivity, and the final subset determination. An enhanced graph clustering ant colony optimisation (EGCACO) algorithm is proposed to solve the three (3) MGCACO algorithm problems. The proposed improvement includes: (i) an ACO feature clustering method to obtain clusters of highly correlated features; (ii) an adaptive selection technique for subset construction from the clusters of features; and (iii) a genetic-based method for producing the final subset of features. The ACO feature clustering method utilises the ability of various mechanisms such as intensification and diversification for local and global optimisation to provide highly correlated features. The adaptive technique for ant selection enables the parameter to adaptively change based on the feedback of the search space. The genetic method determines the final subset, automatically, based on the crossover and subset quality calculation. The performance of the proposed algorithm was evaluated on 18 benchmark datasets from the University California Irvine (UCI) repository and nine (9) deoxyribonucleic acid (DNA) microarray datasets against 15 benchmark metaheuristic algorithms. The experimental results of the EGCACO algorithm on the UCI dataset are superior to other benchmark optimisation algorithms in terms of the number of selected features for 16 out of the 18 UCI datasets (88.89%) and the best in eight (8) (44.47%) of the datasets for classification accuracy. Further, experiments on the nine (9) DNA microarray datasets showed that the EGCACO algorithm is superior than the benchmark algorithms in terms of classification accuracy (first rank) for seven (7) datasets (77.78%) and demonstrates the lowest number of selected features in six (6) datasets (66.67%). The proposed EGCACO algorithm can be utilised for FS in DNA microarray classification tasks that involve large dataset size in various application domains

    Design of Energy Management Strategies for a Battery-Ultracapacitor Electric Vehicle

    Get PDF
    The battery pack is the most expensive component in electric vehicles. Electric vehicles are prone to accelerated battery degradation due to the high charging/discharging cycles and high peak power demand. One solution to this issue would be increasing the battery capacity to meet the high energy requests. However, increasing the battery size is not reasonable due to the high cost and volume. An alternative solution is integrating other energy storage systems into the vehicle powertrain. The additional energy storage system highlights an energy management strategy to distribute the power among onboard energy storage systems effectively. Energy management systems incorporate different strategies classified based on their computational time, implementability in real-time, and measurable performance to be optimized. This thesis considers the case study of Chevy Spark model year 2015 with a hybrid energy storage system including battery and ultracapacitor. First, an overview of diffrent energy storage systems is presented, followed by a review of different hybrid energy storage' configurations. Second, energy management strategies are categorized into three main classifications: rule-based, optimization-based, and data-based algorithms. Third, the selected vehicle model with an embedded rule-based energy management strategy is developed in MATLAB Simulink, and battery performance is validated against available real-world data. Optimal power distribution among battery and ultracapacitor is achieved through an offline global optimal algorithm in chapter 5 in a way to improve battery life. Finally, optimal results are used as a training dataset for an online data-based energy management strategy. Results prove the strategy's effectiveness by improving battery life by an average of 16% compared to the rule-based and 12% difference from the globally optimal strategy on various driving conditions. The proposed energy management strategy provides near-optimal performance while it is real-time implementable and does not need to have beforehand knowledge of driving cycles

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Multi-Objective Optimization in Metabolomics/Computational Intelligence

    Get PDF
    The development of reliable computational models for detecting non-linear patterns encased in throughput datasets and characterizing them into phenotypic classes has been of particular interest and comprises dynamic studies in metabolomics and other disciplines that are encompassed within the omics science. Some of the clinical conditions that have been associated with these studies include metabotypes in cancer, in ammatory bowel disease (IBD), asthma, diabetes, traumatic brain injury (TBI), metabolic syndrome, and Parkinson's disease, just to mention a few. The traction in this domain is attributable to the advancements in the procedures involved in 1H NMR-linked datasets acquisition, which have fuelled the generation of a wide abundance of datasets. Throughput datasets generated by modern 1H NMR spectrometers are often characterized with features that are uninformative, redundant and inherently correlated. This renders it di cult for conventional multivariate analysis techniques to e ciently capture important signals and patterns. Therefore, the work covered in this research thesis provides novel alternative techniques to address the limitations of current analytical pipelines. This work delineates 13 variants of population-based nature inspired metaheuristic optimization algorithms which were further developed in this thesis as wrapper-based feature selection optimizers. The optimizers were then evaluated and benchmarked against each other through numerical experiments. Large-scale 1H NMR-linked datasets emerging from three disease studies were employed for the evaluations. The rst is a study in patients diagnosed with Malan syndrome; an autosomal dominant inherited disorder marked by a distinctive facial appearance, learning disabilities, and gigantism culminating in tall stature and macrocephaly, also referred to as cerebral gigantism. Another study involved Niemann-Pick Type C1 (NP-C1), a rare progressive neurodegenerative condition marked by intracellular accrual of cholesterol and complex lipids including sphingolipids and phospholipids in the endosomal/lysosomal system. The third study involved sore throat investigation in human (also known as `pharyngitis'); an acute infection of the upper respiratory tract that a ects the respiratory mucosa of the throat. In all three cases, samples from pathologically-con rmed cohorts with corresponding controls were acquired, and metabolomics investigations were performed using 1H NMR technique. Thereafter, computational optimizations were conducted on all three high-dimensional datasets that were generated from the disease studies outlined, so that key biomarkers and most e cient optimizers were identi ed in each study. The clinical and biochemical signi cance of the results arising from this work were discussed and highlighted

    Semantic Biclustering

    Get PDF
    Tato disertační práce se zaměřuje na problém hledání interpretovatelných a prediktivních vzorů, které jsou vyjádřeny formou dvojshluků, se specializací na biologická data. Prezentované metody jsou souhrnně označovány jako sémantické dvojshlukování, jedná se o podobor dolování dat. Termín sémantické dvojshlukování je použit z toho důvodu, že zohledňuje proces hledání koherentních podmnožin řádků a sloupců, tedy dvojshluků, v 2-dimensionální binární matici a zárove ň bere také v potaz sémantický význam prvků v těchto dvojshlucích. Ačkoliv byla práce motivována biologicky orientovanými daty, vyvinuté algoritmy jsou obecně aplikovatelné v jakémkoli jiném výzkumném oboru. Je nutné pouze dodržet požadavek na formát vstupních dat. Disertační práce představuje dva originální a v tomto ohledu i základní přístupy pro hledání sémantických dvojshluků, jako je Bicluster enrichment analysis a Rule a tree learning. Jelikož tyto metody nevyužívají vlastní hierarchické uspořádání termů v daných ontologiích, obecně je běh těchto algoritmů dlouhý čin může docházet k indukci hypotéz s redundantními termy. Z toho důvodu byl vytvořen nový operátor zjemnění. Tento operátor byl včleněn do dobře známého algoritmu CN2, kde zavádí dvě redukční procedury: Redundant Generalization a Redundant Non-potential. Obě procedury pomáhají dramaticky prořezat prohledávaný prostor pravidel a tím umožňují urychlit proces indukce pravidel v porovnání s tradičním operátorem zjemnění tak, jak je původně prezentován v CN2. Celý algoritmus spolu s redukčními metodami je publikován ve formě R balííčku, který jsme nazvali sem1R. Abychom ukázali i možnost praktického užití metody sémantického dvojshlukování na reálných biologických problémech, v disertační práci dále popisujeme a specificky upravujeme algoritmus sem1R pro dv+ úlohy. Zaprvé, studujeme praktickou aplikaci algoritmu sem1R v analýze E-3 ubikvitin ligázy v trávicí soustavě s ohledem na potenciál regenerace tkáně. Zadruhé, kromě objevování dvojshluků v dat ech genové exprese, adaptujeme algoritmus sem1R pro hledání potenciálne patogenních genetických variant v kohortě pacientů.This thesis focuses on the problem of finding interpretable and predic tive patterns, which are expressed in the form of biclusters, with an orientation to biological data. The presented methods are collectively called semantic biclustering, as a subfield of data mining. The term semantic biclustering is used here because it reflects both a process of finding coherent subsets of rows and columns in a 2-dimensional binary matrix and simultaneously takes into account a mutual semantic meaning of elements in such biclusters. In spite of focusing on applications of algorithms in biological data, the developed algorithms are generally applicable to any other research field, there are only limitations on the format of the input data. The thesis introduces two novel, and in that context basic, approaches for finding semantic biclusters, as Bicluster enrichment analysis and Rule and tree learning. Since these methods do not exploit the native hierarchical order of terms of input ontologies, the run-time of algorithms is relatively long in general or an induced hypothesis might have terms that are redundant. For this reason, a new refinement operator has been invented. The refinement operator was incorporated into the well-known CN2 algorithm and uses two reduction procedures: Redundant Generalization and Redundant Non-potential, both of which help to dramatically prune the rule space and consequently, speed-up the entire process of rule induction in comparison with the traditional refinement operator as is presented in CN2. The reduction procedures were published as an R package that we called sem1R. To show a possible practical usage of semantic biclustering in real biological problems, the thesis also describes and specifically adapts the algorithm for two real biological problems. Firstly, we studied a practical application of sem1R algorithm in an analysis of E-3 ubiquitin ligase in the gastrointestinal tract with respect to tissue regeneration potential. Secondly, besides discovering biclusters in gene expression data, we adapted the sem1R algorithm for a different task, concretely for finding potentially pathogenic genetic variants in a cohort of patients

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    Evolutionary Computation, Optimization and Learning Algorithms for Data Science

    Get PDF
    A large number of engineering, science and computational problems have yet to be solved in a computationally efficient way. One of the emerging challenges is how evolving technologies grow towards autonomy and intelligent decision making. This leads to collection of large amounts of data from various sensing and measurement technologies, e.g., cameras, smart phones, health sensors, smart electricity meters, and environment sensors. Hence, it is imperative to develop efficient algorithms for generation, analysis, classification, and illustration of data. Meanwhile, data is structured purposefully through different representations, such as large-scale networks and graphs. We focus on data science as a crucial area, specifically focusing on a curse of dimensionality (CoD) which is due to the large amount of generated/sensed/collected data. This motivates researchers to think about optimization and to apply nature-inspired algorithms, such as evolutionary algorithms (EAs) to solve optimization problems. Although these algorithms look un-deterministic, they are robust enough to reach an optimal solution. Researchers do not adopt evolutionary algorithms unless they face a problem which is suffering from placement in local optimal solution, rather than global optimal solution. In this chapter, we first develop a clear and formal definition of the CoD problem, next we focus on feature extraction techniques and categories, then we provide a general overview of meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms

    Synergy between artificial immune systems and probabilistic graphical models

    Get PDF
    Orientador: Fernando Jose Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Sistemas imunológicos artificiais (SIAs) e modelos gráficos probabilísticos são duas importantes técnicas para a construção de sistemas inteligentes e tem sido amplamente exploradas por pesquisadores das mais diversas áreas, tanto no aspecto teórico quanto pratico. Entretanto, geralmente o potencial de cada técnica é explorado isoladamente, sem levar em consideração a possível cooperação entre elas. Como uma primeira contribuição deste trabalho, é proposta uma metodologia que explora as principais vantagens dos SIAs como ferramentas de otimização voltadas para aprendizado de redes bayesianas a partir de conjuntos de dados. Por outro lado, os SIAs já propostos para otimização em espaços discretos e contínuos correspondem a meta-heurísticas populacionais sem mecanismos para lidarem eficientemente com blocos construtivos, e também com poucos recursos para se beneficiarem do conhecimento já adquirido acerca do espaço de busca. A segunda contribuição desta tese é a proposição de quatro algoritmos que procuram superar estas limitações, em contextos mono-objetivo e multiobjetivo. São substituídos os operadores de clonagem e mutação por um modelo probabilístico representando a distribuição de probabilidades das melhores soluções. Em seguida, este modelo é empregado para gerar novas soluções. Os modelos probabilísticos utilizados são a rede bayesiana, para espaços discretos, e a rede gaussiana, para espaços contínuos. A escolha de ambas se deve às suas capacidades de capturar adequadamente as interações mais relevantes das variáveis do problema. Resultados promissores foram obtidos nos experimentos de otimização realizados, os quais trataram, em espaços discretos, de seleção de atributos e de ensembles para classificação de padrões, e em espaços contínuos, de funções multimodais de elevada dimensão. Palavras-chave: sistemas imunológicos artificiais, redes bayesianas, redes gaussianas, otimização em espaços discretos e contínuos, otimização mono-objetivo e multiobjetivoAbstract: Artificial immune systems (AISs) and probabilistic graphical models are two important techniques for the design of intelligent systems, and they have been widely explored by researchers from diverse areas, in both theoretical and practical aspects. However, the potential of each technique is usually explored in isolation, without considering the possible cooperation between them. As a first contribution of this work, it is proposed an approach that explores the main advantages of AISs as optimization tools applied to the learning of Bayesian networks from data sets. On the other hand, the AISs already proposed to perform optimization in discrete and continuous spaces correspond to population-based meta-heuristics without mechanisms to deal effectively with building blocks, and also having few resources to benefit from the knowledge already acquired from the search space. The second contribution of this thesis is the proposition of four algorithms devoted to overcoming these limitations, both in single-objective and multi-objective contexts. The cloning and mutation operators are replaced by a probabilistic model representing the probability distribution of the best solutions. After that, this model is employed to generate new solutions. The probabilistic models adopted are the Bayesian network, for discrete spaces, and the Gaussian network, for continuous spaces. These choices are supported by their ability to properly capture the most relevant interactions among the variables of the problem. Promising results were obtained in the optimization experiments carried out, which have treated, in discrete spaces, feature selection and ensembles for pattern classification, and, in continuous spaces, multimodal functions of high dimension. Keywords: artificial immune systems, Bayesian networks, Gaussian networks, optimization in discrete and continuous domains, single-objective and multi-objective optimizationDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing
    corecore